0
Get Alert
Please Wait... Processing your request... Please Wait.
You must sign in to sign-up for alerts.

Please confirm that your email address is correct, so you can successfully receive this alert.

Special Articles   |    
Systematic Review of Neuroimaging Correlates of Executive Functioning: Converging Evidence From Different Clinical Populations
Milap A. Nowrangi, M.D., M.Be.; Constantine Lyketsos, M.D.; Vani Rao, M.D.; Cynthia A. Munro, Ph.D.
The Journal of Neuropsychiatry and Clinical Neurosciences 2014;26:114-125. doi:10.1176/appi.neuropsych.12070176
View Author and Article Information

The authors report no financial relationships with commercial interests.

From the Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.

Send correspondence to Dr. Nowrangi; e-mail: mnowran1@jhmi.edu

Copyright © 2014 by the American Psychiatric Association

Received July 18, 2012; Revised December 21, 2012; Accepted April 17, 2013.

Abstract

Executive functioning (EF) is an important cognitive domain that is negatively affected in a number of neuropsychiatric conditions. Neuroimaging methods have led to insights into the anatomical and functional nature of EF. The authors conducted a systematic review of the recent cognitive and neuroimaging literature to investigate how the neuroimaging correlates of EF compare between different diagnostic groups. The authors found that the frontal, parietal, and cerebellar lobes were most frequently associated with EF when comparing results from different clinical populations; the occipital lobe was not correlated with EF in any group. These findings suggest that individual disease processes affect circuits within an identifiable distributed network rather than isolated regions.

Abstract Teaser
Figures in this Article

Your Session has timed out. Please sign back in to continue.
Sign In Your Session has timed out. Please sign back in to continue.
Sign In to Access Full Content
 
Username
Password
Sign in via Athens (What is this?)
Athens is a service for single sign-on which enables access to all of an institution's subscriptions on- or off-site.
Not a subscriber?

Subscribe Now/Learn More

PsychiatryOnline subscription options offer access to the DSM-5 library, books, journals, CME, and patient resources. This all-in-one virtual library provides psychiatrists and mental health professionals with key resources for diagnosis, treatment, research, and professional development.

Need more help? PsychiatryOnline Customer Service may be reached by emailing PsychiatryOnline@psych.org or by calling 800-368-5777 (in the U.S.) or 703-907-7322 (outside the U.S.).

Anchor for Jump
TABLE 1.Summary of Literature
Table Footer Note

ARMS: at-risk mental state; ASD: autism spectrum disorder; ExAD: executive predominant AD; ExMCI: executive predominant MCI; FDG: 18-fluoro-D-deoxy-glucose; MA: methamphetamine abuse; MemAD: memory predominant AD; MemMCI: memory predominant MCI; PNFA: progressive nonfluent aphasia; PSP: progressive supernuclear palsy; TMT: Trail Making Test; ToL: Tower of London

Table Footer Note

a r=Spearman’s correlation statistic.

Table Footer Note

b Tc–99m-ECD.

Table Footer Note

c [11C]SCH23390 and [11C]FLB457.

Table Footer Note

d Pearson correlation voxel maxima MNI coordinate.

Anchor for Jump
TABLE 2.Lobar Relationships to Diagnosis
Anchor for Jump
TABLE 3.Lobar Relationships to Single-Administered Test of Executive Functioning (EF)
Table Footer Note

ACC: Anterior cingulate cortex; D-KEFS: Delis-Kaplan Executive Functioning System; TMT: Trail Making Test; ToL: Tower of London; WCST: Wisconsin Card Sorting Test.

+

References

Miyake  A;  Friedman  NP;  Emerson  MJ  et al:  The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis.  Cognit Psychol 2000; 41:49–100
[CrossRef] | [PubMed]
 
Vinken  P;  Bruyn  G:  Frontal lobe syndromes. Handbook of Clinical Neurology .  Amsterdam,  North Holland, 1969, pp 725–757
 
Lyketsos  CG:  Lessons from neuropsychiatry.  J Neuropsychiatry Clin Neurosci 2006; 18:445–449
[CrossRef] | [PubMed]
 
Ueda  H;  Kitabayashi  Y;  Narumoto  J  et al:  Relationship between clock drawing test performance and regional cerebral blood flow in Alzheimer’s disease: a single photon emission computed tomography study.  Psychiatry Clin Neurosci 2002; 56:25–29
[CrossRef] | [PubMed]
 
Bergeson  AG;  Lundin  R;  Parkinson  RB  et al:  Clinical rating of cortical atrophy and cognitive correlates following traumatic brain injury.  Clin Neuropsychol 2004; 18:509–520
[CrossRef] | [PubMed]
 
Baillieux  H;  De Smet  HJ;  Dobbeleir  A  et al: Cognitive and affective disturbances following focal cerebellar damage in adults: A neuropsychological and SPECT study.  Cortex 2010; 46:869-879.
 
Chang  YL;  Jacobson  MW;  Fennema-Notestine  C  et al; Alzheimer’s Disease Neuroimaging Initiative:  Level of executive function influences verbal memory in amnestic mild cognitive impairment and predicts prefrontal and posterior cingulate thickness.  Cereb Cortex 2010; 20:1305–1313
[CrossRef] | [PubMed]
 
Dickerson  BC;  Wolk  DA:  Initiative tAasDN. Dysexecutive versus amnesic phenotypes of very mild Alzheimer’s disease are associated with distinct clinical, genetic and cortical thinning characteristics.  J Neurol Neurosurg Psychiatr y 2010; 82:45–51
[CrossRef] | [PubMed]
 
Kaller  CP;  Rahm  B;  Spreer  J  et al:  Dissociable contributions of left and right dorsolateral prefrontal cortex in planning.  Cereb Cortex 2011; 21:307–317
[CrossRef] | [PubMed]
 
Kinnunen  KM;  Greenwood  R;  Powell  JH  et al:  White matter damage and cognitive impairment after traumatic brain injury.  Brain 2011; 134:449–463
[CrossRef] | [PubMed]
 
Koutsouleris  N;  Patschurek-Kliche  K;  Scheuerecker  J  et al:  Neuroanatomical correlates of executive dysfunction in the at-risk mental state for psychosis.  Schizophr Res 2010; 123:160–174
[CrossRef] | [PubMed]
 
McDonald  CR;  Gharapetian  L;  McEvoy  LK  et al:  Relationship between regional atrophy rates and cognitive decline in mild cognitive impairment .  NBA2012; 33:242–253
 
Pa  J;  Boxer  A;  Chao  LL  et al:  Clinical-neuroimaging characteristics of dysexecutive mild cognitive impairment.  Ann Neurol 2009; 65:414–423
[CrossRef] | [PubMed]
 
Sasson  E;  Doniger  GM;  Pasternak  O  et al:  Structural correlates of cognitive domains in normal aging with diffusion tensor imaging.  Brain Struct Funct 2012; 217:503–515
[CrossRef] | [PubMed]
 
Schmitz  N;  Arkink  EB;  Mulder  M  et al:  Frontal lobe structure and executive function in migraine patients.  Neurosci Lett 2008; 440:92–96
[CrossRef] | [PubMed]
 
Stricker  NH;  Chang  YL;  Fennema-Notestine  C  et al; Alzheimer’s Disease Neuroimaging Initiative:  distinct profiles of brain and cognitive changes in the very old with Alzheimer disease.  Neurology 2011; 77:713–721
[CrossRef] | [PubMed]
 
Takahashi  H;  Kato  M;  Takano  H  et al:  Differential contributions of prefrontal and hippocampal dopamine D(1) and D(2) receptors in human cognitive functions.  J Neurosci 2008; 28:12032–12038
[CrossRef] | [PubMed]
 
Toepper  M;  Gebhardt  H;  Beblo  T  et al:  Functional correlates of distractor suppression during spatial working memory encoding.  Neuroscience 2010; 165:1244–1253
[CrossRef] | [PubMed]
 
Turken  AU;  Herron  TJ;  Kang  X  et al:  Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.  BMC Med Imaging 2009; 9:20
[CrossRef] | [PubMed]
 
Wolf  RC;  Sambataro  F;  Vasic  N  et al:  Longitudinal functional magnetic resonance imaging of cognition in preclinical Huntington’s disease.  Exp Neurol 2011; 231:214–222
[CrossRef] | [PubMed]
 
Connolly  CG;  Foxe  JJ;  Nierenberg  J  et al:  The neurobiology of cognitive control in successful cocaine abstinence.  Drug Alcohol Depend 2012; 121:45–53
[CrossRef] | [PubMed]
 
Jacobs  HIL;  Visser  PJ;  Van Boxtel  MPJ  et al The association between white matter hyperintensities and executive decline in mild cognitive impairment is network dependent.  Neurobiol Aging 2012; 33:201.e1–201.e8
 
Nestor  LJ;  Ghahremani  DG;  Monterosso  J  et al:  Prefrontal hypoactivation during cognitive control in early abstinent methamphetamine-dependent subjects.  Psychiatry Res 2011; 194:287–295
[CrossRef] | [PubMed]
 
van Tol  MJ;  van der Wee  NJA;  Demenescu  LR  et al:  Functional MRI correlates of visuospatial planning in out-patient depression and anxiety.  Acta Psychiatr Scand 2011; 124:273–284
[CrossRef] | [PubMed]
 
Hunt  A;  Haberkorn  U;  Schröder  J  et al:  Neural Correlates of Executive Dysfunction in Prodromal and Manifest Alzheimer’s Disease.  GeroPsych 2011; 24:77–81
 
Chang  CC;  Lee  YC;  Chang  WN  et al:  Damage of white matter tract correlated with neuropsychological deficits in carbon monoxide intoxication after hyperbaric oxygen therapy.  J Neurotrauma 2009; 26:1263–1270
[CrossRef] | [PubMed]
 
Fine  EM;  Delis  DC;  Dean  D  et al:  Left frontal lobe contributions to concept formation: a quantitative MRI study of performance on the Delis-Kaplan Executive Function System Sorting Test.  J Clin Exp Neuropsychol 2009; 31:624–631
[CrossRef] | [PubMed]
 
Segarra  N;  Bernardo  M;  Valdes  M  et al:  Cerebellar deficits in schizophrenia are associated with executive dysfunction.  Neuroreport 2008; 19:1513–1517
[CrossRef] | [PubMed]
 
Haldane  M;  Cunningham  G;  Androutsos  C  et al:  Structural brain correlates of response inhibition in Bipolar Disorder I.  J Psychopharmacol 2008; 22:138–143
[CrossRef] | [PubMed]
 
Sim  ME;  Lyoo  IK;  Streeter  CC  et al Cerebellar gray matter volume correlates with duration of cocaine use in cocaine-dependent subjects.  Neuropsychopharmacology 2007; :2229–2237.
 
Grant  JE;  Correia  S;  Brennan-Krohn  T  et al:  Frontal white matter integrity in borderline personality disorder with self-injurious behavior.  J Neuropsychiatry Clin Neurosci 2007; 19:383–390
[CrossRef] | [PubMed]
 
Lie  C-H;  Specht  K;  Marshall  JC  et al:  Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test.  Neuroimage 2006; 30:1038–1049
[CrossRef] | [PubMed]
 
Moll  J;  de Oliveira-Souza  R;  Moll  FT  et al:  The cerebral correlates of set-shifting: an fMRI study of the trail making test.  Arq Neuropsiquiatr 2002; 60:900–905
[CrossRef] | [PubMed]
 
Wilmsmeier  A;  Ohrmann  P;  Suslow  T  et al:  Neural correlates of set-shifting: decomposing executive functions in schizophrenia.  J Psychiatry Neurosci 2010; 35:321–329
[CrossRef] | [PubMed]
 
Schmitz  N;  Rubia  K;  Daly  E  et al:  Neural correlates of executive function in autistic spectrum disorders.  Biol Psychiatry 2006; 59:7–16
[CrossRef] | [PubMed]
 
Schall  U;  Johnston  P;  Lagopoulos  J  et al:  Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study.  Neuroimage 2003; 20:1154–1161
[CrossRef] | [PubMed]
 
Eslinger  PJ;  Moore  P;  Anderson  C  et al:  Social cognition, executive functioning, and neuroimaging correlates of empathic deficits in frontotemporal dementia.  J Neuropsychiatry Clin Neurosci 2011; 23:74–82
[CrossRef] | [PubMed]
 
Cahn-Weiner  DA;  Boyle  PA;  Malloy  PF:  Tests of executive function predict instrumental activities of daily living in community-dwelling older individuals.  Appl Neuropsychol 2002; 9:187–191
[CrossRef] | [PubMed]
 
Marshall  GA;  Rentz  DM;  Frey  MT  et al; Alzheimer’s Disease Neuroimaging Initiative:  executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer’s disease.  Alzheimers Dement 2011; 7:300–308
[CrossRef] | [PubMed]
 
Rosenberg  PB;  Mielke  MM;  Appleby  B;  Oh  E;  Leoutsakos  J-M;  Lyketsos  CG. Neuropsychiatric symptoms in MCI subtypes: the importance of executive dysfunction.  Int J Geriat Psychiatry 2011; 26: 364–372.
[CrossRef]
 
Aretouli  E;  Brandt  J:  Everyday functioning in mild cognitive impairment and its relationship with executive cognition.  Int J Geriatr Psychiatry 2010; 25:224–233
[CrossRef] | [PubMed]
 
Royall  DR;  Lauterbach  EC;  Cummings  JL  et al:  Executive control function: a review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association.  J Neuropsychiatry Clin Neurosci 2002; 14:377–405
[CrossRef] | [PubMed]
 
Barceló  F;  Knight  RT:  Both random and perseverative errors underlie WCST deficits in prefrontal patients.  Neuropsychologia 2002; 40:349–356
[CrossRef] | [PubMed]
 
Barceló  F;  Rubia  FJ:  Non-frontal P3b-like activity evoked by the Wisconsin Card Sorting Test.  Neuroreport 1998; 9:747–751
[CrossRef] | [PubMed]
 
Baldo  JV;  Shimamura  AP;  Delis  DC  et al:  Verbal and design fluency in patients with frontal lobe lesions.  J Int Neuropsychol Soc 2001; 7:586–596
[CrossRef] | [PubMed]
 
Welsh  MC;  Satterlee-Cartmell  T;  Stine  M:  Towers of Hanoi and London: contribution of working memory and inhibition to performance.  Brain Cogn 1999; 41:231–242
[CrossRef] | [PubMed]
 
Barceló  F;  Muñoz-Céspedes  JM;  Pozo  MA  et al:  Attentional set shifting modulates the target P3b response in the Wisconsin card sorting test.  Neuropsychologia 2000; 38:1342–1355
[CrossRef] | [PubMed]
 
Stuss  DT;  Shallice  T;  Alexander  MP  et al:  A multidisciplinary approach to anterior attentional functions.  Ann N Y Acad Sci 1995; 769:191–211
[CrossRef] | [PubMed]
 
Spearman  C:  The Abilities of Man: Their Nature and Measurement.  London,  MacMillan and Co, 1927
 
Spearman  C:  The proof and measurement of association between two things. By C. Spearman, 1904.  Am J Psychol 1987; 100:441–471
[CrossRef] | [PubMed]
 
Nisbett  RE;  Aronson  J;  Blair  C  et al:  Intelligence: new findings and theoretical developments.  Am Psychol 2012; 67:130–159
[CrossRef] | [PubMed]
 
Thompson  GN:  Cerebral area essential to consciousness.  Bull Los Angel Neuro Soc 1951; 16:311–334
[PubMed]
 
Petrides  M;  Alivisatos  B;  Meyer  E  et al:  Functional activation of the human frontal cortex during the performance of verbal working memory tasks.  Proc Natl Acad Sci USA 1993; 90:878–882
[CrossRef] | [PubMed]
 
Owen  AM;  Downes  JJ;  Sahakian  BJ  et al:  Planning and spatial working memory following frontal lobe lesions in man.  Neuropsychologia 1990; 28:1021–1034
[CrossRef] | [PubMed]
 
Jonides  J;  Smith  EE;  Koeppe  RA  et al:  Spatial working memory in humans as revealed by PET.  Nature 1993; 363:623–625
[CrossRef] | [PubMed]
 
Champod  AS;  Petrides  M:  Dissociable roles of the posterior parietal and the prefrontal cortex in manipulation and monitoring processes.  Proc Natl Acad Sci USA 2007; 104:14837–14842
[CrossRef] | [PubMed]
 
Corbetta  M;  Patel  G;  Shulman  GL:  The reorienting system of the human brain: from environment to theory of mind.  Neuron 2008; 58:306–324
[CrossRef] | [PubMed]
 
Rottschy  C;  Langner  R;  Dogan  I  et al:  Modelling neural correlates of working memory: a coordinate-based meta-analysis.  Neuroimage 2012; 60:830–846
[CrossRef] | [PubMed]
 
Barbey  AK;  Colom  R;  Solomon  J  et al:  An integrative architecture for general intelligence and executive function revealed by lesion mapping.  Brain 2012; 135:1154–1164
[CrossRef] | [PubMed]
 
Bechara  A;  Damasio  H;  Damasio  AR:  Emotion, decision making and the orbitofrontal cortex.  Cereb Cortex 2000; 10:295–307
[CrossRef] | [PubMed]
 
Manes  F;  Sahakian  B;  Clark  L  et al:  Decision-making processes following damage to the prefrontal cortex.  Brain 2002; 125:624–639
[CrossRef] | [PubMed]
 
Chen  ST;  Sultzer  DL;  Hinkin  CH  et al:  Executive dysfunction in Alzheimer’s disease: association with neuropsychiatric symptoms and functional impairment.  J Neuropsychiatry Clin Neurosci 1998; 10:426–432
[PubMed]
 
Chen  T-F;  Chen  Y-F;  Cheng  T-W  et al:  Executive dysfunction and periventricular diffusion tensor changes in amnesic mild cognitive impairment and early Alzheimer’s disease.  Hum Brain Mapp 2009; 30:3826–3836
[CrossRef] | [PubMed]
 
Huang  J;  Auchus  AP:  Diffusion tensor imaging of normal appearing white matter and its correlation with cognitive functioning in mild cognitive impairment and Alzheimer’s disease.  Ann N Y Acad Sci 2007; 1097:259–264
[CrossRef] | [PubMed]
 
Sjöbeck  M;  Elfgren  C;  Larsson  E-M  et al:  Alzheimer’s disease (AD) and executive dysfunction. A case-control study on the significance of frontal white matter changes detected by diffusion tensor imaging (DTI).  Arch Gerontol Geriatr 2010; 50:260–266
[CrossRef] | [PubMed]
 
Geschwind  DH;  Robidoux  J;  Alarcón  M  et al:  Dementia and neurodevelopmental predisposition: cognitive dysfunction in presymptomatic subjects precedes dementia by decades in frontotemporal dementia.  Ann Neurol 2001; 50:741–746
[CrossRef] | [PubMed]
 
Salmon  E;  Lekeu  F;  Bastin  C  et al:  Functional imaging of cognition in Alzheimer’s disease using positron emission tomography.  Neuropsychologia 2008; 46:1613–1623
[CrossRef] | [PubMed]
 
Schroeter  ML;  Vogt  B;  Frisch  S  et al:  Executive deficits are related to the inferior frontal junction in early dementia.  Brain 2012; 135:201–215
[CrossRef] | [PubMed]
 
Teipel  SJ;  Willoch  F;  Ishii  K  et al:  Resting state glucose utilization and the CERAD cognitive battery in patients with Alzheimer’s disease.  Neurobiol Aging 2006; 27:681–690
[CrossRef] | [PubMed]
 
Podell  K;  Gifford  K;  Bougakov  D  et al:  Neuropsychological assessment in traumatic brain injury.  Psychiatr Clin North Am 2010; 33:855–876
[CrossRef] | [PubMed]
 
Waldstein  SR;  Wendell  CR:  Neurocognitive function and cardiovascular disease.  J Alzheimers Dis 2010; 20:833–842
[PubMed]
 
Debette  S;  Markus  HS:  The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis.  BMJ 2010; 341:c3666
[CrossRef] | [PubMed]
 
Black  SE:  Vascular cognitive impairment: epidemiology, subtypes, diagnosis and management.  J R Coll Physicians Edinb 2011; 41:49–56
[CrossRef] | [PubMed]
 
Freedman  D;  Brown  AS.  The developmental course of executive functioning in schizophrenia.  Int J Dev Neurosci 2011; :237–43.
 
Eisenberg  DP;  Berman  KF. Executive function, neural circuitry, and genetic mechanisms in schizophrenia.  Neuropsychopharmacology 2010; :258–277
 
Pratt  JA;  Winchester  C;  Egerton  A  et al:  Modelling prefrontal cortex deficits in schizophrenia: implications for treatment.  Br J Pharmacol 2008; 153(Suppl 1):S465–S470
[CrossRef] | [PubMed]
 
Royall  DR:  Frontal systems impairment in major depression.  Semin Clin Neuropsychiatry 1999; 4:13–23
[PubMed]
 
Cotter  D;  Mackay  D;  Landau  S  et al:  Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder.  Arch Gen Psychiatry 2001; 58:545–553
[CrossRef] | [PubMed]
 
Cotter  D;  Mackay  D;  Chana  G  et al:  Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder.  Cereb Cortex 2002; 12:386–394
[CrossRef] | [PubMed]
 
References Container
+
+

CME Activity

There is currently no quiz available for this resource. Please click here to go to the CME page to find another.
Submit a Comments
Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
Comments are moderated and will appear on the site at the discertion of APA editorial staff.

* = Required Field
(if multiple authors, separate names by comma)
Example: John Doe



Related Content
Articles
Books
Textbook of Traumatic Brain Injury, 2nd Edition > Chapter 17.  >
Textbook of Traumatic Brain Injury, 2nd Edition > Chapter 17.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 46.  >
Dulcan's Textbook of Child and Adolescent Psychiatry > Chapter 10.  >
Textbook of Traumatic Brain Injury, 2nd Edition > Chapter 29.  >
Topic Collections
Psychiatric News
PubMed Articles
Gray Matter Abnormalities in Pediatric Mild Traumatic Brain Injury. J Neurotrauma Published online Oct 14, 2014.;
Cognitive and psychological functioning in fabry disease. Arch Clin Neuropsychol 2014;29(7):642-50.