0
Get Alert
Please Wait... Processing your request... Please Wait.
You must sign in to sign-up for alerts.

Please confirm that your email address is correct, so you can successfully receive this alert.

REGULAR ARTICLES   |    
Hippocampal Volume Reduction Correlates With Apathy in Traumatic Brain Injury, But Not Schizophrenia
Yoichiro Takayanagi, M.D., Ph.D.; Gwendoly Gerner, Psy.D.; Mizuho Takayanagi, M.D.; Vani Rao, M.D.; Tracy D. Vannorsdall, Ph.D.; Akira Sawa, M.D., Ph.D.; David J. Schretlen, Ph.D.; Nicola G. Cascella, M.D.
The Journal of Neuropsychiatry and Clinical Neurosciences 2013;25:292-301. doi:10.1176/appi.neuropsych.12040093
View Author and Article Information

This study was supported by a NARSAD Young Investigator Award (to Dr. Cascella) and NIH grants R01 MH060504 and R01 MH077852 (to Dr. Schretlen); P50 MH094268 (to Dr. Sawa); R01 MH078175 and R33 MH079017 (to Dr. Cascella); and a grant from the Stanley Foundation (to Dr. Cascella).

From the Dept. of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, and the Dept. of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.

Send correspondence to Dr. Cascella; e-mail: ncascel1@gmail.com or Dr. Schretlen; e-mail: dschret@jhmi.edu

Copyright © 2013 by the American Psychiatric Association

Received April 14, 2012; Revised September 01, 2012; Revised December 05, 2012; Accepted December 06, 2012.

Abstract

Apathy commonly accompanies both traumatic brain injury (TBI) and deficit syndrome schizophrenia (DSZ), despite unclear neurological bases. The authors examined differences in cortical thickness and subcortical/cerebellar regional volumes between adult TBI survivors, patients with DSZ, and healthy-control subjects by use of 3-D magnetic resonance imaging (MRI), and correlated imaging findings with clinical ratings of apathy and selected cognitive test scores. Imaging findings revealed specific areas of volume reduction in TBI survivors and areas of cortical thinning among patients with DSZ. The severity of apathy symptoms was similar across patient groups; however, severity of apathy was only correlated with imaging findings in TBI survivors.

Abstract Teaser
Figures in this Article

Your Session has timed out. Please sign back in to continue.
Sign In Your Session has timed out. Please sign back in to continue.
Sign In to Access Full Content
 
Username
Password
Sign in via Athens (What is this?)
Athens is a service for single sign-on which enables access to all of an institution's subscriptions on- or off-site.
Not a subscriber?

Subscribe Now/Learn More

PsychiatryOnline subscription options offer access to the DSM-5 library, books, journals, CME, and patient resources. This all-in-one virtual library provides psychiatrists and mental health professionals with key resources for diagnosis, treatment, research, and professional development.

Need more help? PsychiatryOnline Customer Service may be reached by emailing PsychiatryOnline@psych.org or by calling 800-368-5777 (in the U.S.) or 703-907-7322 (outside the U.S.).

FIGURE 1. Correlation Between Left Hippocampal Volume and AES Ratings in Patients With TBI (left) and DSZ (right)

There was an inverse correlation of AES ratings and volume of the left hippocampus in TBI patients (partial correlation coefficient = −0.93; p=0.002, adjusted for age, sex, and intracranial volume).

AES: Apathy Evaluation Scale; DSZ: deficit schizophrenia; TBI: traumatic brain injury.

FIGURE 2. Cortical Thickness Difference Maps Between DSZ and Healthy Control Subjectsa

DSZ: deficit schizophrenia; HC: healthy controls; RH: right hemisphere; LH: left hemisphere.

ap <0.01, corrected.

FIGURE 3. Cortical Thickness Difference Maps Between DSZ and TBI Subjectsa

DSZ: deficit schizophrenia; TBI: traumatic brain injury; RH: right hemisphere; LH: left hemisphere.

ap <0.05, corrected.

Anchor for Jump
TABLE 1.Demographic and Clinical Characteristics of the Subjects
Table Footer Note

SD: standard deviation; HC: healthy controls; DSZ: deficit schizophrenia; TBI: traumatic brain injury; NART: National Adult Reading Test; AES: Apathy Evaluation Scale; SAPS: Assessment of Positive Symptoms; SANS: Assessment of Negative Symptoms; DH: dominant hand; NDH: nondominant hand; RCTF: Rey-Osterrieth Complex Figure Test; HVLT–R: Hopkins Verbal Learning Test–Revised; BVMT–R, Brief Visuospatial Memory Test–Revised; mWCST: modified Wisconsin Card-Sorting Test.

Anchor for Jump
TABLE 2.Comparison of Mean Volumes of the Subcortical/Cerebellar Regions of Interest (ROIs), Adjusted for Age, Gender, and Intracranial Volume (ml)
Table Footer Note

Values represent mean of measured volume (ml). ANCOVA: analysis of covariance; DSZ: deficit schizophrenia; ROI: region of interest; TBI, traumatic brain injury; SD: standard deviation.

Table Footer Note

a Adjusted for age and gender.

+

References

Marin  RS;  Wilkosz  PA:  Disorders of diminished motivation.  J Head Trauma Rehabil 2005; 20:377–388
[CrossRef] | [PubMed]
 
Kant  R;  Duffy  JD;  Pivovarnik  A:  Prevalence of apathy following head injury.  Brain Inj 1998; 12:87–92
[CrossRef] | [PubMed]
 
Carpenter  WT  Jr;  Heinrichs  DW;  Wagman  AM:  Deficit and nondeficit forms of schizophrenia: the concept.  Am J Psychiatry 1988; 145:578–583
[PubMed]
 
Landes  AM;  Sperry  SD;  Strauss  ME  et al:  Apathy in Alzheimer’s disease.  J Am Geriatr Soc 2001; 49:1700–1707
[CrossRef] | [PubMed]
 
Schrag  A:  Psychiatric aspects of Parkinson’s disease: an update.  J Neurol 2004; 251:795–804
[CrossRef] | [PubMed]
 
van Zomeren  AH;  van den Burg  W:  Residual complaints of patients two years after severe head injury.  J Neurol Neurosurg Psychiatry 1985; 48:21–28
[CrossRef] | [PubMed]
 
Burgess  N;  Maguire  EA;  O’Keefe  J:  The human hippocampus and spatial and episodic memory.  Neuron 2002; 35:625–641
[CrossRef] | [PubMed]
 
Oddy  M;  Coughlan  T;  Tyerman  A  et al:  Social adjustment after closed head injury: a further follow-up seven years after injury.  J Neurol Neurosurg Psychiatry 1985; 48:564–568
[CrossRef] | [PubMed]
 
Arango  C;  Buchanan  RW;  Kirkpatrick  B  et al:  The deficit syndrome in schizophrenia: implications for the treatment of negative symptoms.  Eur Psychiatry 2004; 19:21–26
[CrossRef] | [PubMed]
 
Rao  V;  Spiro  JR;  Schretlen  DJ  et al:  Apathy syndrome after traumatic brain injury compared with deficits in schizophrenia.  Psychosomatics 2007; 48:217–222
[CrossRef] | [PubMed]
 
Bigler  ED;  Blatter  DD;  Anderson  CV  et al:  Hippocampal volume in normal aging and traumatic brain injury.  AJNR Am J Neuroradiol 1997; 18:11–23
[PubMed]
 
Bigler  ED:  Quantitative magnetic resonance imaging in traumatic brain injury.  J Head Trauma Rehabil 2001; 16:117–134
[CrossRef] | [PubMed]
 
MacKenzie  JD;  Siddiqi  F;  Babb  JS  et al:  Brain atrophy in mild or moderate traumatic brain injury: a longitudinal quantitative analysis.  AJNR Am J Neuroradiol 2002; 23:1509–1515
[PubMed]
 
Tomaiuolo  F;  Carlesimo  GA;  Di Paola  M  et al:  Gross morphology and morphometric sequelae in the hippocampus, fornix, and corpus callosum of patients with severe non-missile traumatic brain injury without macroscopically detectable lesions: a T1-weighted MRI study.  J Neurol Neurosurg Psychiatry 2004; 75:1314–1322
[CrossRef] | [PubMed]
 
Tomaiuolo  F;  Worsley  KJ;  Lerch  J  et al:  Changes in white matter in long-term survivors of severe non-missile traumatic brain injury: a computational analysis of magnetic resonance images.  J Neurotrauma 2005; 22:76–82
[CrossRef] | [PubMed]
 
Gale  SD;  Baxter  L;  Roundy  N  et al:  Traumatic brain injury and grey matter concentration: a preliminary voxel based morphometry study.  J Neurol Neurosurg Psychiatry 2005; 76:984–988
[CrossRef] | [PubMed]
 
Ariza  M;  Serra-Grabulosa  JM;  Junqué  C  et al:  Hippocampal head atrophy after traumatic brain injury.  Neuropsychologia 2006; 44:1956–1961
[CrossRef] | [PubMed]
 
Ding  K;  Marquez de la Plata  C;  Wang  JY  et al:  Cerebral atrophy after traumatic white matter injury: correlation with acute neuroimaging and outcome.  J Neurotrauma 2008; 25:1433–1440
[CrossRef] | [PubMed]
 
Sidaros  A;  Skimminge  A;  Liptrot  MG  et al:  Long-term global and regional brain volume changes following severe traumatic brain injury: a longitudinal study with clinical correlates.  Neuroimage 2009; 44:1–8
[CrossRef] | [PubMed]
 
Vannorsdall  TD;  Cascella  NG;  Rao  V  et al:  A morphometric analysis of neuroanatomic abnormalities in traumatic brain injury.  J Neuropsychiatry Clin Neurosci 2010; 22:173–181
[CrossRef] | [PubMed]
 
Warner  MA;  Youn  TS;  Davis  T  et al:  Regionally selective atrophy after traumatic axonal injury.  Arch Neurol 2010; 67:1336–1344
[CrossRef] | [PubMed]
 
Turetsky  B;  Cowell  PE;  Gur  RC  et al:  Frontal and temporal lobe brain volumes in schizophrenia: relationship to symptoms and clinical subtype.  Arch Gen Psychiatry 1995; 52:1061–1070
[CrossRef] | [PubMed]
 
Sanfilipo  M;  Lafargue  T;  Rusinek  H  et al:  Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms.  Arch Gen Psychiatry 2000; 57:471–480
[CrossRef] | [PubMed]
 
Sigmundsson  T;  Suckling  J;  Maier  M  et al:  Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white-matter tracts in schizophrenic patients with prominent negative symptoms.  Am J Psychiatry 2001; 158:234–243
[CrossRef] | [PubMed]
 
Cascella  NG;  Fieldstone  SC;  Rao  VA  et al:  Gray-matter abnormalities in deficit schizophrenia.  Schizophr Res 2010; 120:63–70
[CrossRef] | [PubMed]
 
Cascella  NG;  Testa  SM;  Meyer  SM  et al:  Neuropsychological impairment in deficit vs. non-deficit schizophrenia.  J Psychiatr Res 2008; 42:930–937; available at doi: 10.1016/j.jpsychires.2007.10.002
[CrossRef] | [PubMed]
 
Liddle  PF;  Morris  DL:  Schizophrenic syndromes and frontal lobe performance.  Br J Psychiatry 1991; 158:340–345
[CrossRef] | [PubMed]
 
Stolar  N;  Berenbaum  H;  Banich  MT  et al:  Neuropsychological correlates of alogia and affective flattening in schizophrenia.  Biol Psychiatry 1994; 35:164–172
[CrossRef] | [PubMed]
 
Andersson  S;  Bergedalen  AM:  Cognitive correlates of apathy in traumatic brain injury.  Neuropsychiatry Neuropsychol Behav Neurol 2002; 15:184–191
[PubMed]
 
Kirkpatrick  B;  Buchanan  RW;  McKenney  PD  et al:  The Schedule for the Deficit Syndrome: an instrument for research in schizophrenia.  Psychiatry Res 1989; 30:119–123
[CrossRef] | [PubMed]
 
Marin  RS;  Biedrzycki  RC;  Firinciogullari  S:  Reliability and validity of the Apathy Evaluation Scale.  Psychiatry Res 1991; 38:143–162
[CrossRef] | [PubMed]
 
Clarke  DE;  Ko  JY;  Kuhl  EA  et al:  Are the available apathy measures reliable and valid? a review of the psychometric evidence.  J Psychosom Res 2011; 70:73–97
[CrossRef] | [PubMed]
 
Blair  J:  Predicting premorbid IQ: a revision of the National Adult Reading Test.  Clin Neuropsychol 1989; 3:129–136
[CrossRef]
 
Wing  JK;  Sartorius  N;  Ustun  TB:  Schedules for Clinical Assessment in Neuropsychiatry (SCAN), Version 2.1 .  Geneva, Switzerland,  World Health Organization, 1996
 
Takayanagi  Y;  Takahashi  T;  Orikabe  L  et al:  Classification of first-episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness.  PLoS ONE 2011; 6:e21047
[CrossRef] | [PubMed]
 
Eichenbaum  H;  Yonelinas  AP;  Ranganath  C:  The medial temporal lobe and recognition memory.  Annu Rev Neurosci 2007; 30:123–152
[CrossRef] | [PubMed]
 
Szabo  K;  Förster  A;  Jäger  T  et al:  Hippocampal lesion patterns in acute posterior cerebral artery stroke: clinical and MRI findings.  Stroke 2009; 40:2042–2045
[CrossRef] | [PubMed]
 
Jorge  RE;  Starkstein  SE;  Robinson  RG:  Apathy following stroke.  Can J Psychiatry 2010; 55:350–354
[PubMed]
 
Matsushita  M;  Oyanagi  S;  Hanawa  S  et al:  Nasu-Hakola’s disease (membranous lipodystrophy): a case report.  Acta Neuropathol 1981; 54:89–93
[CrossRef] | [PubMed]
 
Stuss  D;  van Reekum  R;  Murphy  K:  Differentiation of states and causes of apathy, in The Neuropsychology of Emotion . Edited by Borod  J.  New York,  Oxford University Press, 2000
 
Alexander  GE;  DeLong  MR;  Strick  PL:  Parallel organization of functionally segregated circuits linking basal ganglia and cortex.  Annu Rev Neurosci 1986; 9:357–381
[CrossRef] | [PubMed]
 
Hampshire  A;  Chaudhry  AM;  Owen  AM  et al:  Dissociable roles for lateral orbitofrontal cortex and lateral prefrontal cortex during preference driven reversal learning.  Neuroimage 2012; 59:4102–4112
[CrossRef] | [PubMed]
 
Leeson  VC;  Robbins  TW;  Matheson  E  et al:  Discrimination learning, reversal, and set-shifting in first-episode schizophrenia: stability over six years and specific associations with medication type and disorganization syndrome.  Biol Psychiatry 2009; 66:586–593
[CrossRef] | [PubMed]
 
Roth  RM;  Flashman  LA;  Saykin  AJ  et al:  Apathy in schizophrenia: reduced frontal lobe volume and neuropsychological deficits.  Am J Psychiatry 2004; 161:157–159
[CrossRef] | [PubMed]
 
References Container
+
+

CME Activity

There is currently no quiz available for this resource. Please click here to go to the CME page to find another.
Submit a Comments
Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
Comments are moderated and will appear on the site at the discertion of APA editorial staff.

* = Required Field
(if multiple authors, separate names by comma)
Example: John Doe



Related Content
Books
Textbook of Traumatic Brain Injury, 2nd Edition > Chapter 39.  >
Textbook of Traumatic Brain Injury, 2nd Edition > Chapter 8.  >
Textbook of Traumatic Brain Injury, 2nd Edition > Chapter 11.  >
Textbook of Traumatic Brain Injury, 2nd Edition > Chapter 39.  >
Textbook of Traumatic Brain Injury, 2nd Edition > Chapter 11.  >
Topic Collections
Psychiatric News
APA Guidelines
PubMed Articles