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Although somatosensory amplification is theorized to serve a critical role in somatization, it remains poorly understood
neurobiologically. In this perspective article, convergent visceral-somatic processing is highlighted, and neuroimaging studies
in somatoform disorders are reviewed. Neural correlates of cognitive-affective amplifiers are integrated into a neurocircuit
framework for somatosensory amplification. The anterior cingulate cortex, insula, amygdala, hippocampal formation, and
striatum are some of the identified regions. Clinical symptomatology in a given patient or groupmay represent dysfunction in
one or more of these neurobehavioral nodes. Somatosensory amplification may, in part, develop through stress-mediated
aberrant neuroplastic changes and the neuromodulatory effects of inflammation.
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Approximately one-third of symptoms reported by patients
in primary care and subspecialty settings remain medically
unexplained after a complete evaluation.1 The term somatiza-
tion refers to patients with medically unexplained symptoms
that seek medical attention because of suspected disease or
individuals reporting symptoms out-of-proportion to their
medical condition. Their symptoms commonly include ab-
dominal pain, bloating, dizziness, chest pain, breathlessness,
pelvic pain, food intolerance, palpitations, and back pain
among others.2 When considering symptoms that have
“bothered [the patient] a lot” in the past month, 16%233%
have no demonstrable medical basis.3 Patients with medi-
cally unexplained symptoms engage in a disproportionately
high rate of medical care utilization, including outpatient
visits, hospitalizations, and overall healthcare costs (averaging
4700 USD annually per individual).4

The somatosensory amplification construct has been theo-
rized by Arthur Barsky and colleagues to serve a critical role in
the pathophysiology of somatization.5 Somatosensory amplifi-
cation refers to the tendency to experience a wide range of
benign bodily sensations as intrusive, intense, noxious, and
disruptive. Several elements are associated with amplification
including: 1) a heightened attentional focus on bodily sensa-
tions; 2) the tendency to select out certain relatively weak and
infrequent sensations; 3) the disposition to react to these sen-
sationswith affect and cognitions that intensify them andmake
them more alarming and distressing.5 Somatosensory amplifi-
cation has also been linked to alexithymia,6,7 and somatization
has been associated with dysphoric-anxious mood and cogni-
tive distortions, particularly pain catastrophizing.8

Neuroimaging techniques applied to somatoform disorder
populations and related cognitive-affective neuroscience studies
in healthy populations allow for the in vivo detection of neural
circuit abnormalities associated with somatization generally,
and with somatosensory amplification more specifically. In
this perspective article, central nervous system convergence
of visceral and somatic processing is first summarized. There-
after, neuroimaging studies in somatization disorder, undiffer-
entiated somatization disorder, and somatoformpain disorder
are reviewed [functional neurological symptom disorder (i.e.,
conversion disorder) was previously discussed elsewhere9].
Hypothesized cognitive amplifiers of visceral-somatic pro-
cessing including negative expectation, negative attentional
bias, and pain catastrophizing, along with affective modi-
fiers including alexithymia and dysphoric-anxious mood are
discussed by integrating neuroimaging findings in healthy
populations. Lastly, a neurocircuit model of somatosensory
amplification is suggested. We propose that somatosensory
amplification involves abnormal interactions among large-scale
neural systemsmediating visceral-somatic perception, emotional
processing/awareness, and cognitive control. Frontolimbic,
subcortical, and brainstem structures are particularly linked
to the neurocircuitry of abnormal symptom amplification.

The purpose of this article is to provide a theoretical neuro-
circuit framework through which physician-scientists may
begin to understand brain-behavior relationships in somato-
sensory amplification, rather than to provide a comprehensive
review of published studies on somatosensory amplification
and somatoform disorders. Articles using functional magnetic
resonance imaging (fMRI), single photon-emission computed
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tomography (SPECT) and positron emission
tomography (PET) to investigate somatization
disorder, undifferentiated somatoform disor-
der, and somatoform pain disorder were em-
phasized. Studies exploring other “functional”
disorders including fibromyalgia, chronic fa-
tigue syndrome, and irritable bowel syndrome
were largely omitted to limit the discussion to
DSM-IV somatoform disorders.

SOMATIC AND VISCERAL AFFERENT
PROCESSING

Neurobiological, noninvasive neuroimaging, and
neuropathological studies have identified distrib-
uted neural networks involved in somatic and
visceral sensory processing. This section focuses
on sites of information convergence, and mainly
details the lamina I spinothalamocortical pathway
(Figure 1).10

Small diameter sensory afferents conveying
physiological information from tissues of the
body (including mechanical, thermal, stress,
metabolic, inflammatory, and visceral) terminate
in lamina I within the dorsal horn of the spinal
cord. Second-order neurons project contralaterally
in the spinal cord and ascend as part of the lat-
eral spinothalamic tract. These ascending pro-
jections, prior to terminating in the thalamus,
project within the brainstem onto the nucleus
tractus solitarius (NTS), parabrachial nucleus
(PBN), and nucleus cuneiformis (NCF). Visceral
afferents from the 5th, 7th, 9th, and 10th cranial
nerves terminate on the NTS, which subse-
quently project onto the PBN. Lamina I spino-
thalamic afferents synapse topographically onto
the posterior part of the ventromedial nucleus (VMpo) and the
medial dorsal nucleus (MD) of the thalamus. Afferents from
the PBN project onto an adjacent part of the thalamus, the
basal ventralmedial nucleus (VMb), and theMDnucleus. [Note:
conventional spinothalamic afferents synapse ventrolaterally in
the thalamus before projecting to primary somatosensory cortex
(SI).] Notably, visceral-somatic afferents converge within the
brainstem and the MD nucleus of the thalamus.

The VMpo and VMb thalamic nuclei project topograph-
ically onto the posterior insula, while theMDnucleus projects
to the anterior cingulate cortex (ACC). Based on their afferent
connections, the ACC and insula are major cortical sites of
visceral-somatic processing and information convergence;
the ACC and insula are reciprocally connected and these
regions also connect to the orbitofrontal cortex (OFC) and the
amygdala.11 Additional components of visceral-somatic pro-
cessing include SI, secondary somatosensory (SII), poste-
rior parietal, medial and lateral prefrontal cortices, the
striatum, hippocampal formation, lateral thalamus, hypo-
thalamus, pituitary, and brainstem structures including the

periaqueductal gray (PAG) and rostral ventromedial medulla
(RVM). The brainstem structures form part of the descend-
ing pain neuromodulatory system, which may either inhibit
or amplify visceral-somatic processing within the spinal
cord.12 Of note, while differences in the cortical-subcortical
processing of visceral and somatic stimuli have been report-
ed,13 evidence suggests considerable cortical-subcortical and
brainstem overlap.14–17

NEUROIMAGING STUDIES IN SOMATIZATION
DISORDER, UNDIFFERENTIATED SOMATOFORM
DISORDER, AND SOMATOFORM PAIN DISORDER

Functional and structural neuroimaging studies haveused fMRI,
PET, SPECT, and structural MRI techniques to investigate neu-
rocircuit abnormalities in somatization disorder, undifferentiated
somatoform populations, and somatoform pain disorder.

Neuroimaging studies thus far have mainly identified
striatal and amygdalar abnormalities in somatization dis-
order and undifferentiated somatoform disorder. Hakala

FIGURE 1. Graphic Depiction of the Lamina I Spinothalamocortical Pathway
Demonstrating Convergence of Visceral-Somatic Processing Within the
Brainstem, Thalamus, Anterior Cingulate Cortex (ACC), and Insula (Ins)a
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and colleagues performed the first series of investigations
in 10 female patients (six with somatization disorder; four
with undifferentiated somatoform disorder) compared with
healthy subjects using resting-state, fluorodeoxyglucose-PET,
and demonstrated bilateral caudate-putamen hypometabolism
in patients.18,19 The same cohort exhibited increased bi-
lateral caudate volumes compared with controls using a
manualized MRI tracing technique.20 In addition to the
striatum, amygdalar abnormalities have also been charac-
terized. Manualized tracings identified bilateral amygdalar
volumetric reductions in 20 women with somatization dis-
order compared with healthy females.21 Similarly, in an fMRI
affectively valenced picture viewing task, 20mixed somatoform
disorder patients (13 undifferentiated, five somatoform pain
disorder, two somatization disorder) exhibited decreased left
amygdala and right parahippocampal activity during processing
of emotionally valenced facial expressions compared with un-
recognizable smoothed pictures.22 Less frequently, smaller pi-
tuitary volumes were reported in somatization disorder using
manualized tracings,23 and bilateral superior temporal and left
lateralized postcentral, precentral, inferior parietal, and middle
occipital regional SPECT hyperperfusion was identified in
patients with undifferentiated somatoform disorder compared
with healthy subjects.24

Studies of patients with somatoform pain disorder com-
monly, though not exclusively, demonstrated increased re-
gional central pain processing activity and reduced prefrontal
cortex activity. Several investigations have compared patients
with somatoform pain disorder with healthy subjects using
pain provocation paradigms. In a fMRI study using a pinprick
noxious stimuli task, 17 mixed-gender somatoform pain dis-
order patients comparedwith healthy subjects showed increased
activity in pain processing regions including the anterior insula,
hippocampus, putamen, and thalamus; in addition, somatoform
pain disorder patients exhibited increased inferior parietal,
temporo-occipital, lateral temporal, ventrolateral prefrontal, and
dorsomedial prefrontal regional activity.25 This somatoform
pain disorder cohort compared with healthy subjects also
demonstrated increased left insula and decreased bilateral
temporo-occipital, superior parietal and right OFC activity
during exposure to pictures and audio scenes of physical
violence. Noxious thermal stimuli delivery was associated with
anterior insula, parahippocampal, and amygdalar hyperactivity,
along with orbitofrontal/ventromedial prefrontal hypoactivity,
in 12 women with somatoform pain disorder compared with
healthy subjects.26 Decreased lateral prefrontal and increased
right ACC, left thalamus and bilateral brainstem, caudate, and
posterior cingulate cortex regional cerebral blood flow were
also noted in a SPECT study of 10 patients with somatoform
pain disorder compared with healthy subjects.27 In par-
allel, an automated voxel-based structuralMRIwhole-brain
analysis identified decreased prefrontal (ventromedial/OFC/
ACC/middle frontal/superiormedial), insula, parahippocampal,
inferior temporal, and posterior cingulate cortex gray matter
volumes.28 Resting-state functional neuroimaging studies have
reported increased brainstem, caudate, thalamus and ACC

activity, and decreased lateral prefrontal activity.29,30 In sum-
mary, neuroimaging studies suggest enhanced central pain
processing activity in patientswith somatoform pain disorder,
whereas striatal and amygdalar dysfunction have been linked
to somatization disorder and undifferentiated somatoform
disorder.

COGNITIVE AMPLIFIERS OF
VISCERAL-SOMATIC PROCESSING

Although few neuroimaging studies have investigated cir-
cuit abnormalities in somatization disorder, undifferentiated
somatoform disorder and somatoform pain disorder, advances
in cognitive-affective neuroscience provide additional impor-
tant insights into the neurocircuitry of somatosensory ampli-
fication. The following section examines the neural correlates
of negative expectation/anticipation, negative attentional bias,
and pain catastrophizing, cognitive processes implicated in
somatosensory amplification.5–8 These amplifiers converge to
limit an individual’s ability to shift cognitive resources away
from visceral-somatic perceptions.

Appraisal: Negative Expectation/Anticipation
The hippocampal formation has been linked to negative
expectancy effects by the work of Ploghaus and colleagues.
Investigators compared behavioral and neural responses in
18 healthy men under two conditions: during condition 1,
a visual cue reliably predicted the delivery of moderately
intense thermal noxious stimulation; in condition 2, a dis-
tinct visual cue predicted the delivery of moderately intense
noxious stimuli but was also associated with the possibil-
ity of stronger noxious stimulus delivery.31 Observationally,
moderately intense stimuli were rated as more intense when
preceded by the condition 2 cue. Furthermore, comparisons
of the neural responses of moderately intense stimuli signaled
by condition 1 and 2 showed increased left hippocampal for-
mation activity (including the parahippocampus) and enhanced
functional connectivity between the hippocampal formation,
mid-insula and perigenual ACC during the less predictable
condition. In a modified version of this paradigm, reduced dif-
ferential hippocampal activity between high and low anxiety
states was associated with increased report of daily physical
(somatized) symptoms.32 Hippocampal formation activity also
correlated with individual differences in pain threshold sen-
sitivity,33 predicted posterior insula activity during noxious
stimuli processing,34 and was associated with negative expec-
tancy effects to opiate analgesia.35

The ACC, insula, and brainstem have also been linked to
negative expectancy effects. In a study of 27 mixed-gender
healthy subjects exposed to high- and low-intensity thermal
stimuli, each predicted by distinct visual cues,36 subjects
again rated stimuli as more noxious when preceded by a
high-intensity signaling cue. High-intensity stimuli coupled
to the higher intensity cue demonstrated increased activity in
the caudal ACC and NCF compared with the same stimulus
paired to a lower intensity cue. The authors suggested that
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involvement of the descending pain modulatory system po-
tentially accounted for negative expectation effects. In other
investigations, enhanced expectation of thermal stimuli un-
pleasantness increased ACC and posterior insula activity.37

The nocebo effect, an adverse effect or symptom wors-
ening based on the negative expectation of a given treatment,
is a subtype of the negative expectancy effect. In a study of
13 mixed-gender subjects using a within-subject design,
thermal pain, and sham acupuncture to induce nocebo hy-
peralgesia, pain processing regions including the ACC, in-
sula, frontal-parietal operculum, OFC, and hippocampus
were hyperactivated.38 Nocebo hyperalgesia has been linked
to decreased opioid and dopaminergic activity in the insula,
dlPFC, nucleus accumbens, and PAG.39 Overall, studies of
negative expectancy effects, including nocebo hyperalgesia,
suggest hippocampal formation, ACC, insula and brainstem
involvement.

Attentional Bias
Negative attentional bias, the enhanced sensitivity and
detection of negatively valenced stimuli, involves the ACC,
amygdala, and lateral prefrontal cortex. A series of functional
neuroimaging studies evaluated the interactions of hypo-
serotonergic brain states, negative attentional bias, and neu-
ral activation patterns using an acute tryptophan depletion
(ATD) protocol; ATD transiently induces a hypo-serotonergic
brain state. Employing an affectively valenced Stroop paradigm
to probe emotional interference, 15 healthy women demon-
strated delayed color naming during negatively valenced word
viewing and increased ACC activity during interference fol-
lowing ATD.40 Studies using ATD paradigms have also shown
increased amygdalar/hippocampal activity associated with
heightened threat sensitivity41 and low mood42 during hypo-
serotonergic brain states. In network analyses, tryptophan
depletion altered amygdalar‒ventral ACC/ventrolateral pre-
frontal cortex connectivity in healthy individuals during an
aversive facial viewing task.43

Neural activation patterns to visceral rectal distension
following ATD have been specifically studied.44 Twelve
healthy females exhibited increased amygdala, rostral ACC,
insula, and thalamic activity during rectal balloon stimula-
tion following ATD, along with reduced prefrontal mediated
amygdala inhibition. Although not the focus of this article, this
pattern of decreased top-down amygdala inhibition during
rectal stimulation following ATD in healthy females re-
sembled the functional connectivity pattern of patients with
irritable bowel syndrome.

A role for the lateral prefrontal cortex in attentional bias
has also been reported.45 Twelve healthy men rated visceral
distension as significantly less painful during performance of
a 1-back working memory task compared with no distrac-
tion.46 Esophageal stimulation during distraction resulted in
decreased right dorsal ACC and lateral prefrontal activity.
These studies, overall, suggested top-down (ACC, lateral
prefrontal) and bottom-up (amygdala, hippocampal forma-
tion) mechanisms in the biology of negative attentional bias.

Pain Catastrophizing
Neural correlates of pain catastrophizing, the forecasting of
future visceral-somatic experiences as markedly aversive,
involve the ACC, insula, and dlPFC. Seminowicz and col-
leagues examined the effects of pain catastrophizing on
central nociceptive processing in 21 mixed-gender healthy
subjects using fMRI.47 During mild electrical stimulation of
the median nerve, a positive correlation was observed be-
tween pain catastrophizing reports and blood-oxygen-level-
dependence (BOLD) signal in the right rostral ACC and
bilateral insula (including anterior and posterior regions).
With moderately intense electrical pain, an inverse cor-
relation was observed between the dlPFC and reported
catastrophizing. In addition, preserved integrity of whitematter
tracts in the external capsule adjacent to the anterior and
posterior insula correlated positively with catastrophizing in
healthy subjects using diffusion tensor imaging (DTI).48 These
findings, while preliminary, linked the ACC, insula, and dlPFC
to pain catastrophizing.

AFFECTIVE MODIFIERS OF
VISCERAL-SOMATIC PROCESSING

In addition to integrating cognitive amplifiers in the theorized
biology of somatosensory amplification, it is also important to
discuss affectivemodifiers including alexithymia anddysphoric/
anxious mood.

Alexithymia
Alexithymia is the reduced ability to recognize and verbalize
one’s emotions, along with difficulties distinguishing bodily
sensations from emotional experiences. Alexithymia been as-
sociated with somatosensory amplification,6,7 and alexithymia
has been linked to activity in right hemisphere lateralized49

ACC, insula, amygdala, and less frequently posterior cingulate
cortex.50–62 In an early PET study probing the neural correlates
of emotional awareness, ACC metabolism positively correlated
with emotional awareness.51 Hypoactivity52,53,58 and less fre-
quently hyperactivity57,61 of the ACC has been observed in
patientswith alexithymia across a variety of affectively valenced
stimuli. Structural ACC abnormalities have also been reported
(studies have identified increased,55 decreased,54,60 and a lack
of differential ACC volumes56). Sex differences potentially ac-
count for these divergent findings; several studies reported
that alexithymic men and women exhibited distinct ACC
abnormalities.56,57,61 An inverse correlation between alexithymia
and right caudate volumes has also been reported,63 suggesting
potential ACC-subcortical circuit involvement.

Similar to reduced amygdala and insula activity observed in
patients with somatization disorder,22 patients with alexithymia
exhibited reduced amygdala and insula activity to extrinsic emo-
tional stimuli. In an fMRI paradigm, 21 mixed-gender healthy
subjects viewed masked affectively valenced faces and dis-
played an inverse correlation between right amygdala acti-
vity and reported difficulty identifying feelings59; thesefindings
were independently replicated.61 Decreased bilateral insular
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responses to emotional stimuli have also been demonstrated
in alexithymic populations.54,62 These investigations link re-
duced amygdala and insula activity, along with ACC functional
and structural disturbances, to emotional unawareness in
alexithymia.

Negative Emotion
The amplifying effects of negative emotion on visceral-somatic
processing may be mediated, in part, through prefrontal, in-
sular, striatal-thalamic, and brainstem activity. Several studies
have experimentally induced sad mood to study its effects on
aversive sensory processing.64–67 Thirty-two healthy women
participated in either a sad or neutral mood induction protocol;
subjects received painful thermal stimulation during fMRI
scanning both before and after mood induction.66 Sad mood
was associated with pain amplification and increased bilateral
ventrolateral thalamic activity. This finding suggested that
dysphoricmood potentially enhanced thalamo-cortical sensory
gating to reduce pain thresholds. In a similar paradigm applied
to 20 mixed-gender subjects, dysphoric mood induction aug-
mented the perceived unpleasantness of thermal stimuli, and
increased subgenual ACC, inferior frontal gyrus, OFC, pos-
terior insula, hippocampal, caudate, and thalamic activity.64

Visceral stimulation using balloon esophageal distention also
increased right dorsal ACC, anterior insula and inferior frontal
gyrus activity following negative mood induction.65

Anxiety may also amplify visceral-somatic processing.
Applying thermal pain, 13 mixed-gender subjects exhibited a
positive correlation between rostral ACC/ventromedial pre-
frontal cortex activity and reported trait anxiety sensitivity;
OFC activity correlated with fear of pain.68 Individuals
with increased trait anxiety also demonstrated less func-
tional connectivity between the anterior insula and PAG;
decreased insula-PAG functional connectivity increased
the likelihood of pain perception following a near-threshold
stimulus.69 Thus, negativemoodmay enhance visceral-somatic
processing by modulating cortical emotional/sensory pro-
cessing (ACC, insula, OFC), striatal-thalamic, and cortico-
brainstem activity.

A NEURAL CIRCUIT MODEL OF
SOMATOSENSORY AMPLIFICATION

Synthesizing neuroimaging findings across somatization dis-
order, undifferentiated somatoformdisorder, and somatoform
pain disorder, and integrating these abnormalities with
cognitive-affective neuroscience findings, we propose that
aberrant circuit interactions across large-scale neural systems
mediating visceral-somatic perception, emotional processing/
awareness, and cognitive control serve critical roles in the
neurobiology of somatosensory amplification. Important brain
regions linked to somatosensory amplification include the ACC,
insula, amygdala, hippocampal formation, and striatum among
other regions (Figure 2).

The lamina I spinothalamic pathway allows for the inte-
gration of visceral-somatic information within the brainstem,

thalamus, and cortex. Visceral-somatic information converges
cortically within the ACC and insula. The ACC has been clas-
sically subdivided into a subgenual/pregenual affective com-
ponent and a dorsal ACC/anterior middle cingulate cortex
(aMCC) cognitive component.70 Nociceptive studies across
visceral-somatic stimuli elicit robust cingulate gyrus activa-
tions; visceral stimuli frequently activate pregenual and dorsal
ACC, whereas noxious cutaneous stimuli more robustly ac-
tivate the MCC. Uniquely positioned for integration is the
dorsal ACC/aMCC where affectively ladened information,
visceral-somatic processing, motivated behavior, and cogni-
tive control converge. Shackman and colleagues71 recently
proposed this region as a critical integrator of negative affect,
pain, and cognitive control. ACC-subcortical connections in-
clude the nucleus accumbens/ventral caudate, ventral globus
pallidus, and MD, and ventral anterior thalamic nuclei;
cortico-cortical connections occur between the ACC and the
dlPFC, insula, OFC, amygdala, and hippocampal formation.11

ACC/aMCC functional and structural abnormalities have
been reported in somatoform pain disorder,27,28 and this re-
gion is involved in negative expectation bias,36,38,39 negative
attentional bias,40,43,44 alexithymia,52–55,57,58,60,61 and negative
affect modulation of visceral-somatic processing.64,65,68 Cortical
ACC‒dlPFC interactions may mediate negatively valenced,
visceral-somatic forecasting associatedwith catastrophizing,47

and negative attentional bias, whereas ACC‒OFC connections
may mediate top-down influences of negative expectation and
negative mood hierarchically. Caudate-putamen components
of the ACC, dlPFC, and OFC cortical-subcortical circuits
potentially relate more specifically to somatization and un-
differentiated somatoform disorders.18–20

Apart from the ACC, the insula is also likely a critical
region for somatosensory amplification. The posterior insula
receives somatosensory, nociceptive/thermoceptive, and visceral
information from the thalamus. Classic intraoperative elec-
trical stimulation studies of the posterior insula performed
by Penfield verified that many visceral sensations including
gurgling, burning, rising/rolling sensations, and nausea can be
produced through posterior insula activations.72 A.D. Craig
has specifically suggested that the posterior insula provides an
interoceptive representation of the physiological condition of
the body.10 The mid-insula is considered an integrative zone
where affectively andmotivationally valenced information from
the ACC, amygdala, and OFC influence sensory processing. The
integration of visceral-somatic, affective, and motivational in-
formation converges onto the anterior insula, and together with
the ACC, the anterior insula (right.left) has been linked to
emotional awareness.73 Interestingly, the insula and ACC share
large spindle-shaped neurons, termed von Economo neurons,
linked to social-emotional cognition. Differential insular activity
occurs in somatization disorder,74 undifferentiated somatoform
disorder,74 and somatoformpaindisorder,25,26,28,74 and the insula
is involved in negative expectation bias,37–39 alexithymia,54,62 and
the modulation of visceral-somatic processing by negative
emotion.64,65,69 Opioid system activity may potentially drive
insula and ACC related negative expectation responses within
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somatoform illness,39 particularly in the context of negative
emotion.

Somatosensory amplification may involve a bidirectional
pattern of insula and amygdala activity. Patients with so-
matization disorder, undifferentiated somatoform disorder,
and somatoform pain disorder22 exhibit insula and amygdala
hypoactivity to external (environmental) emotionally valenced
stimuli. Amygdalar and insular hypoactivity was also observed
in subjects with alexithymia exposed to extrinsic emotion-
ally valenced stimuli.61,62 Conversely, delivery of self-oriented,
bodily-related stimuli (i.e., tactile) increased amygdala and in-
sula activity in patients with somatoform pain disorder,25–27,30

and these regions also showed hyperactivity in studies of
negative attentional bias.40–44 These findings suggest that
somatosensory amplification may be partially the result of
selective heightened attention and salience for bodily
sensations (internal states) and parallel under-processing
of external emotionally valenced information. Tryptophan
depletion studies suggest serotonergic dysfunction may po-
tentially mediate this bidirectional aberrant activity pattern.

Thehippocampal formation (including theparahippocampal
gyrus) also demonstrated abnormal activity in somatization
disorder,22 undifferentiated somatoform disorder,22 and
somatoform pain disorder patients.22,25,26 Similarly, studies
of negative expectation bias31–35 reported increased hippo-
campal formation activity. Using the Gray-McNaughton the-
ory,75 which posits a role for the hippocampal formation in
responding to aversive information in the context of behav-
ioral conflict (including uncertainty, novelty, and contextual
processing), these studies suggest an amplifying role for the
hippocampal formation in visceral-somatic processing during
uncertainty; this effect may be mediated by enhanced insula
and ACC activity.31

The ACC, insula, amygdala, and hippocampal formation
are all part of the descending pain modulatory system,
which also includes multiple brainstem structures (PAG,
NCF, and RVM).12 Reciprocal connections between the
ACC and the amygdala, OFC, dlPFC, insula, and hippo-
campal formation position the ACC as a key cortical mod-
ulatory region of PAG activity (both directly and indirectly
though ACC-amygdala-PAG connections). Efferent con-
nections between the ACC and the PAG have been de-
scribed in mammals, though DTI failed to reliably identify
human ACC-PAG connections76 suggesting further anatomical
clarification is necessary. Nonetheless, the PAG is connected
to and modulated by the amygdala, insula and multiple
prefrontal cortical regions as well.76 Within the brainstem,
the PAG is interconnected with the RVM and NCF.
Descending RVM and PAG projections can either amplify or
inhibit afferent sensory processing within the dorsal horn
of the spinal cord. These cortico-brainstem connections
likely play a role in somatosensory amplification and fu-
ture research will help determine if intrinsic brainstem ab-
normalities (independent of cortical, top-down influence)
are also involved in the pathophysiology of somatosensory
amplification.

Having delineated a neurocircuit framework for so-
matosensory amplification, it is important to emphasize that
in a given subject or patient group, dysfunction in distinct
nodes or levels of these hierarchical cortical-subcortical-
brainstem-spinal cord circuits may occur. One patient may
have amplification of visceral-somatic processing driven
by enhanced entry-level afferent information within the
dorsal horn of the spinal cord or brainstem nuclei,
whereas another individual may have amplification driven
by cortical-subcortical mediated cognitive and affective
processes.

FIGURE 2. Suggested Theoretical Neural Framework for
Somatosensory Amplification in Somatoform Illnessa
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a Aberrant circuit interactions across neural systems mediating visceral-
somatic perception, emotional processing/awareness, and cognitive
control serve critical roles in the neurobiology of somatosensory
amplification. Cortical-subcortical-brainstem-spinal cord interactions
are theorized to mediate the amplification of visceral-somatic sensations.
Important cognitive processes in somatosensory amplification include:
negative expectation bias (anterior cingulate cortex (ACC), orbitofrontal
cortex (OFC), insula (Ins), hippocampal formation (HF), and brainstem);
negative attentional bias (ACC, amygdala (Amg), dorsolateral prefrontal
cortex (dlPFC)); and pain catastrophizing (ACC, dlPFC, Ins). Affective
processes linked to somatosensory amplification include alexithymia
(ACC, Ins, Amg) and dysphoric-anxious mood (ACC, Ins, OFC). Note:
not shown are OFC connections with the ACC, Ins, Amg, HF and PAG
(periaqueductal gray). RVM indicates rostral ventromedial medulla.
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ADDITIONAL CONSIDERATIONS–INFLAMMATION,
STRESS-MEDIATED NEUROPLASTIC CHANGE AND
AUTONOMIC IMBALANCE

Although this article focuses on neurocircuit disturbances, it
is important to introduce roles for inflammation, aberrant
neuroplastic change, and autonomic imbalance in the path-
ophysiology of somatosensory amplification. Recent research
suggests that proinflammatory states modulate frontolimbic
circuits to alter affective and cognitive elements of visceral-
somatic processing. Chronic interpersonal stress, prevalent in
patients with somatoform disorders, has been associated with
enhanced inflammatory leukocyte response to microbial
challenge,77 and women with elevated levels of circulating
cytokines report poorer health despite controlling for physi-
cal health and diagnosis.78 Furthermore, pain catastrophizing
following noxious stimuli delivery has been associated with
interleukin-6 (IL-6) reactivity.79 A series of studies byHarrison
and colleagues explored the modifying effects of systemic
inflammation on neural activity.80,81 In a double-blind, ran-
domized study using typhoid injection compared with pla-
cebo, individuals who received a typhoid injection reported
worsening mood and demonstrated increased systemic IL-6
levels. In the typhoid injected group, enhanced subgenual ACC
(sgACC) activity was associated with dysphoric mood; de-
creased functional connectivity of the sgACC to the amygdala,
medial prefrontal cortex, and nucleus accumbens was modu-
lated by peripheral IL-6 levels.80 In this same cohort, self-
reported fatigue following injection correlated with bilateral
mid/posterior insula and left ACC activity.81 These studies
suggest a neuromodulatory role for circulating cytokines in the
emergence of dysphoric mood and fatigue.

Aberrant neuroplastic change and impaired development
following early-life interpersonal stress, including sexual/
physical abuse and neglect, are additional elements poten-
tially mediating the emergence of somatic symptoms. Patients
with somatoform illness frequently experience early-life
trauma. Animal models of chronic stress suggest that the
medial prefrontal cortex (including the ACC), hippocampus,
and amygdala undergo neuroplastic changes in response to
prolonged stress.82 The hippocampal CA3 region and medial
prefrontal cortex exhibit dendritic spine density reductions
following repeated stress; amygdalar experience-dependent
changes, although less well studied, have also been described.
Recent large-scale volumetric analyses in human subjects
observed ACC, OFC, insula, hippocampal, and caudate gray
matter reductions associated with a history of childhood
trauma.83 Early-life interpersonal stress also predisposes to
insecure adult attachment. Individuals with insecure attach-
ment display amygdala and striatal dysfunction,84 and abnormal
hypothalamic-pituitary-adrenal axis function.85 Strikingly, these
findings overlap with brain regions theorized to play a role in
abnormal somatosensory amplification.

An imbalance of the autonomic nervous system has also
been reported in somatoformdisorders.86–90Rief and colleagues
characterized elevatedmorning heart rates and cortisol levels,

along with persistent heart rate increases (failed habituation)
during an emotionally valenced word viewing task in patients
with prominent somatization compared with healthy con-
trols90; a similar cohort of patients exhibited persistently
elevated heart rates during rest following completion of an
attentional task.89 Patients with somatization disorder dis-
played increased heart rate and decreased baroreceptor sen-
sitivity during autonomic testing.86 Patients with somatoform
symptoms also exhibited reduced heart rate variability dur-
ing affectively valenced facial viewing88 and pain processing
paradigms.87 These findings suggest a static imbalance of
increased sympathetic and decreased parasympathetic tone.
Thayer and colleagues proposed an important role for the
central autonomic network (CAN), which includes fronto-
limbic, insular and brainstem structures, in the pathobiology
of autonomic imbalance facilitating noxious psychosomatic
experiences.91 Importantly, the CAN converges with the
theorized neurocircuitry of somatosensory amplification.

THERAPEUTIC IMPLICATIONS

Having proposed prominent prefrontal dysfunction (i.e., ACC,
dlPFC, OFC) in the pathophysiology of somatosensory am-
plification, several therapeutic implications emerge. Non-
invasive and invasive neuromodulation, particularly rapid
transcranial magnetic stimulation (rTMS) and deep brain
stimulation (DBS), have been investigated in the treatment of
neuropsychiatric disorders. Modulation of dlPFC activity, in
conjunction with trans-synaptic sgACCmodulation, has been
suggested as the mechanism for therapeutic efficacy of rTMS
in the treatment of major depressive disorder.92 Future in-
vestigations in somatoform illness should evaluate dlPFC
neuromodulation to potentially improve pain catastrophizing,
negative attentional bias, and negative affective distur-
bances. DBS targeting sensory thalamus and periventricular/
periaqueductal gray matter have been used to treat chronic
intractable pain syndromes for the past half-century. In-
terestingly, ventral caudal thalamic stimulation for chronic pain
treatmentmodulated perigenual and dorsal ACC activity,93 and
ventral PAG stimulation enhanced parasympathetic activity.94

For patients with disabling, chronic somatoform pain dis-
orders, consideration should be given to investigating the
PAG, dorsomedial thalamus, and dorsal ACC as potential
therapeutic targets.

Prominent roles for the monoamine and opioid neuro-
transmitter systems in negative attentional bias, negative
expectation, and affective disturbances in somatosensory
amplification are consistent with the pharmacologic evidence
in somatoform disorders. A meta-analysis of antidepressants
(mainly tricyclic and selective serotonin reuptake inhibitors)
compared with placebo for the treatment of somatoform pain
disorder showed significant decreased pain intensity follow-
ing antidepressant use.95 A more recently conducted ran-
domized, double-blind placebo-controlled trial of fluoxetine
in patients with somatoform pain disorder compared with
controls demonstrated drug-related analgesia,with the greatest

e46 neuro.psychiatryonline.org J Neuropsychiatry Clin Neurosci 27:1, Winter 2015

SOMATOSENSORY AMPLIFICATION IN SOMATOFORM DISORDERS

http://neuro.psychiatryonline.org


therapeutic efficacy in patients with comorbid depression.96

Negative expectation, particularly the nocebo effect, has been
linked to decreased opioid and dopaminergic neurotransmitter
activity,39 and this finding may be particularly noteworthy in
the context of an association between severe somatization and
opiate drug misuse.

Empirical evidence supports using cognitive-behavioral
therapy (CBT) for the treatment of somatoform disorders.
Randomized controlled trials investigating the effectiveness
of CBT for somatization disorder, undifferentiated somatoform
disorder, and somatoform pain disorder have demonstrated
improvements in physical symptom severity and level of
functioning.97,98 The particular mechanisms utilized in CBT
[which include modifying physiological arousal, attention, attri-
butionalprocesses, andcognitivedistortions (i.e., catastrophizing)]
target many of the theorized cognitive and affective modifiers
of visceral-somatic processing in somatosensory amplification.

Emerging data for mindfulness-based techniques (MBT)
also suggest some promise in targeting the circuitry of ab-
normal somatosensory amplification. MBT involve training
in specific meditative practices that encourage moment-to-
moment, nonjudgmental, nonreactive awareness. Through
such training, it has been proposed that a distributed, large-
scale network (including the dorsal ACC, dlPFC, and ante-
rior insula among other regions) are functionally recruited to
guide therapeutic changes in neural systems underlying
catastrophizing and affect-biased attention.99 Interestingly,
the most widely cited brain areas of activity and morpho-
logical change during and in response to MBT have been the
ACC, dlPFC, anterior insula, and hippocampus.99 MBT have
been reported to reduce disability pensions in patients with
somatization disorder100 and should be further investigated
in patients with somatoform illness.

LIMITATIONS AND FUTURE DIRECTIONS

There are several important limitations to address regarding
this theoretical neural circuit framework for somatosensory
amplification. Even though this approach integrates somatoform
disorder neuroimaging abnormalities with related findings in
cognitive-affective neuroscience, investigations probing cogni-
tive and affective modifiers of visceral-somatic processing in
somatoform disorder populations are necessary to validate the
proposed model. In addition, there are limited, underpowered
somatoform disorder-specific neuroimaging studies to date, and
case-control studies with increased sample sizes are needed to
ensure the reliability of the framework, and clarify important
concepts such as the role of gender in the pathophysiology of
somatosensory amplification. Several somatoform disorder
visceral-somatic symptoms (i.e., noncardiac chest pain, breath-
lessness, dizziness) are also understudied using brain imaging
techniques and, thus, not fully integrated into the current
framework; these symptoms, however, likely map onto the
neurocircuitry in topographic fashion with similar influences
from cognitive and affective amplifiers. Future research is
necessary to also clarify intra and intercircuit functional

connectivity patterns and to delineate common and disorder-
specific circuit abnormalities across somatoform disorder sub-
types. In addition, this framework focuses on central modifiers
of visceral-somatic processing, however, primary end organ
dysfunction (i.e., abnormal serotonergic transmission in the gut
wall) should be explored for potential additive or synergistic
roles in the pathophysiology of symptom amplification. Future
research will also incorporate genetic-epigenetic influences,
and the neuroimaging based systems-level approach taken in
this article should be further refined with other systems-level
research modalities including electrophysiology techniques
(i.e., event-related potentials). Systems-level measures of brain
function, which may be associated with complex mental states,
are also not necessarily inherently causative of specific abnor-
mal symptoms; this highlights the need for integrative multi-
level research investigations in somatosensory amplification.
Lastly, while critical neurocircuit regions were identified, it will
be necessary to further investigate ACC (subgenual, perigenual,
dorsal) and insula (anterior-midposterior) subregion involve-
ment and directionally of abnormal activation patterns in the
pathophysiology of somatosensory amplification.

CONCLUSIONS

In summary, visceral-somatic physical symptoms are re-
markably prevalent in primary care and subspecialty clinics.
Somatosensory amplification has been theorized to play
a crucial role in the pathophysiology of somatization. In this
article, aberrant interactions across neural circuits mediating
visceral-somatic perception, emotional processing/awareness,
and cognitive control are proposed to serve important roles in
the neurobiology of somatosensory amplification. Key sites of
abnormal activity include the prefrontal cortex, insula, medial
temporal lobe, and striatum within the context of the lamina I
spinothalamocortical and descending pain modulatory path-
ways. At the individual level, activation patterns within hier-
archical cortical-subcortical-brainstem-spinal cord circuits
may vary. Future diagnoses may be based upon the delineation
and classification of distinct patterns of abnormal activity at
the individual patient and group level. The emergence of re-
gional neural patterns of dysfunction may potentially be
explained, in part, through aberrant neuroplastic change in the
context of early-life trauma and the neuromodulatory effects
of inflammatory cytokines. Future investigations are needed
to refine the proposed theoretical framework and explore
therapeutic opportunities to modify neurocircuit activity
through psychotherapy, pharmacology, and region-specific
neuromodulation.
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