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FIGURE 1. Diverse applications of 
artificial intelligence (AI) algorithms 
and large language models in medi
cine and clinical neurosciences

FIGURE 2. Progression of electronic 
large language model (LLM) technol
ogy. 1. Transformer models are 
probably the basic infrastructure for 
these technologies (1). 2. Generative 
pretrained transformer (GPT) was a 
pioneering autoregressive generative 
model (2). 3. GPT-2 featured im
proved GPT technology with multi
task training capabilities (3). 4. GPT-3 
was pretrained on an unprecedent
edly large data set of 45 terabytes of 
text data (4). 5. Instruct generative 
pretrained transformer (InstructGPT) 
introduced the technology of rein
forcement learning from human 
feedback (4). 6. Chat generative 
pretrained transformer (ChatGPT) 
featured learning through human 
feedback and broader conversational 
capabilities (4, 5). 7. ChatGPT-4 is the 
most advanced LLM, capable of 
receiving text and image input (4, 5). 

COVER. Artistic representation of machine learning, chat generative pretrained transformer (ChatGPT), and clinical neurosciences. 
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T 
he medical metaverse and its emerging technolo
gies, such as artificial intelligence (AI), are trans
forming medical education, neuropsychiatric 
practice, and clinical neurosciences (6–8). AI pro

vides earlier detection of many diseases and facilitates the 
clinical management of physical and mental conditions (8). 
For example, AI algorithms (e.g., deep learning and machine 
learning) can learn and recognize specific patterns in 
pathological slides and brain images associated with various 
diseases and brain disorders, such as Parkinson’s disease 
and Alzheimer’s disease (9–12).

Electronic large language models (LLMs) are expanding, 
and their use is becoming more standardized in medicine, 
including medical education, research, and health care 
(13, 14) (Figure 1). LLMs include software featuring AI 
natural language processing (NLP) and conversational ca
pabilities, called “chatbots” (13). There are a number of 
clinical LLMs, such as GatorTron, which is the largest of 
these clinical language models (using more than 90 billion 
words of text, including more than 82 billion words of 
deidentified clinical text) (13, 15). Florence and its successor 
Pahola are chatbots designed by the World Health Organi
zation and Pan American Health Organization that were in
troduced during the COVID-19 pandemic to foster healthier 
lifestyles and mental health (16). Woebot, Wysa, and Leora 
are other mental health–focused LLMs available to individ
uals who prefer interacting with chatbots (17).

Chat generative pretrained transformer (ChatGPT) is a 
recent LLM application created by Open AI, Inc., enabling 
public users to ask a computer questions using natural and 
colloquial language (14). Most of the latest generation of 
NLP technologies are configured on the basis of the 
“transformer model,” capable of recognizing text input and 
differentially weighting the significance of each part of the 
prompt (4, 18, 19) (Figure 2). The most recent versions of 
LLMs can generate meaningful and rationalized contextual 
information that may be indistinguishable from text pro
duced by humans (5).

The latest LLM, ChatGPT-4, uses the plethora of infor
mation and documents available on the World Wide Web. 
Its algorithm procures the online data, and within seconds it 
elaborates well-supported essays, reports, critical evalua
tions, and research articles (5). A recent study evaluating 
the use of ChatGPT in medical education reported that 
this technology can achieve passing scores comparable to 
a third-year medical student on Steps 1 and 2 of the 
United States Medical Licensing Examination (USMLE) 
(20). Another study assessed its performance on Steps 1–3 of 
the USMLE and found that ChatGPT can achieve scores 
near the passing threshold for all three examinations 
without prior training or specialized support (21). In 
addition, when tested on a clinical toxicology case example 
involving organophosphate poisoning, the responses gen
erated by ChatGPT were appropriate and provided good 
explanations of the underlying clinical reasoning (22). 
These results suggest that ChatGPT could become a 

supportive learning tool in medical education and practice, 
among other clinical applications (20–22).

In a research context, ChatGPT can facilitate reviewing 
and writing scientific articles by using the evidence avail
able from thousands of online search engines (23). This 
technology could transform scientific and medical writing 
by saving time and increasing efficiency (24). There are 
increasing concerns about ChatGPT’s potential role in pla
giarism and the impact on academic research (5, 25). 
However, ChatGPT-generated scientific papers may lack 
clinical reasoning and critical thinking (23). Therefore, 
ChatGPT cannot generate documents with original, logical, 
and customized text (i.e., personalized phrases) (25).

In addition, advances in AI, including ChatGPT, could 
assist in the design, development, and safety assessment of 
new drugs (26). These technologies have the potential to 
analyze chemical formulas and molecular algorithms, fos
tering the development of new biochemical compounds 
and formulations leading to the discovery of new medi
cations (26).

AI IN PSYCHIATRY AND CLINICAL 
NEUROSCIENCES

ChatGPT and similar AI applications are becoming impor
tant training tools for medical students and residents in 
neurology and can be beneficial for those in psychiatry and 
clinical neurosciences (7, 27–29). However, the use of 
technology in the general mental health field has been 
limited to brain imaging and other routine diagnostic 
screening tools (e.g., blood tests and urinalysis) (6–8).

Neurological Conditions
Some AI technologies are being integrated into clinical use 
for the rapid detection of disease, for disease management, 
and for the treatment of physical and neurological conditions 
(8, 12). For example, AI segmentation and quantification 
are used to assess neuroimaging data (12). Deep-learning 
and machine-learning algorithms can facilitate the inter
pretation of computed tomography scans among patients 
with traumatic brain injury or other neurological condi
tions (12, 30). AI algorithms can gather individualized 
patient data (e.g., genetic profiles, patient history, and re
sponse to interventions) to help tailor treatment plans, 
supporting a more personalized therapeutic approach (29). 
In addition, AI-supported technologies (e.g., wearables) can 
document interventional progress in real time, providing 
continuous physiological feedback (e.g., electrocardiogram 
[ECG] and digital phenotyping), which facilitates prompt 
and appropriate therapeutic adjustments when needed (31).

AI algorithms also have been integrated in the diagnosis, 
prognosis, and monitoring of motor neuron diseases and 
typically incorporate the progressive dysfunction of lower 
motor neurons or upper motor neurons within the central 
nervous system (32, 33). One study used machine learning 
and lipidomics to distinguish primary lateral sclerosis (PLS) 

J Neuropsychiatry Clin Neurosci 35:4, Fall 2023 neuro.psychiatryonline.org 317

LÓPEZ-OJEDA AND HURLEY 

http://neuro.psychiatryonline.org


from amyotrophic lateral sclerosis (ALS). The investigators 
reported that patients with PLS can be accurately distinguished 
(specificity >88%) from those with ALS and individuals in a 
healthy control group by using machine-learning-supervised 
analysis of lipidome profiles (34). A recent review highlighted 
the impact of machine learning and other AI advances for 
patients with motor neuron diseases (33).

The ability of LLMs to analyze large data sets facilitates 
the identification and compilation of relevant clinical evi
dence among patients with epilepsy, such as patient sub
groups, seizure patterns, best interventional options, and 
other treatment parameters (35, 36). For example, LLMs 
can facilitate identification of individuals who are early 
candidates for resective epilepsy surgery. These analyses 
may mitigate issues such as surgical delays or procedural 
inadequacies and thus improve patient outcomes and save 
lives (37).

Neurodegenerative Diseases
LLMs may also have an important impact in the early de
tection and treatment of neurodegenerative diseases (12). 
Traditional diagnostic tools (patient history, brain scans, 
etc.) are inadequate for predicting which candidates who 
meet the criteria for mild cognitive impairment will even
tually develop Alzheimer’s disease (38). Empirically, AI 
technologies can examine comprehensive sets of multi
modal clinical data, including cognitive test results and 
neuropathology data sets of large cohorts, to generate im
proved predictive models of neurodegenerative diseases 
(39). One study used data from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database and developed a 
modeling system of continuous measurements (i.e., change 
in ADNI–Memory scores) of the progression to Alzheimer’s 
disease. The results suggested that machine-learning algo
rithms were better than binary classification (yes or no) for 
stratifying individuals on the basis of prognostic disease 
trajectories, reducing misclassification (40).

A more recent study described an innovative multivari
able model employing machine learning to accurately dif
ferentiate abnormal neuroimaging profiles on 123I-ioflupane 
single-photon emission computed tomography images for 
differential diagnosis of Parkinson’s syndrome, Parkinson’s 
disease, and dementia with Lewy bodies (41). The machine- 
learning method demonstrated high diagnostic accuracy 
(from 0.86 to 0.93) for the differentiation of each condition 
compared with conventional methods on the basis of cal
culating specific binding ratios derived from regions of in
terest on neuroimaging scans (41).

Depression, Anxiety, and Suicide Prevention
Machine-learning algorithms and ECG signals can be used 
to enhance the initial screening for major depressive dis
order (42). In a study that integrated machine-learning al
gorithms to analyze polysomnographic data and ECG 
signals, the AI-assisted model was highly accurate (86.32%) 
and specific (86.49%) in predicting major depressive 

disorder and suggested that gender was among the most 
important factors in that prediction (42).

Mental health chatbots are becoming increasingly valu
able for individuals with depression and anxiety disorders 
(17). For example, Leora is a sophisticated version of 
ChatGPT capable of communicating with users about their 
mental health status and providing immediate help for 
those with minimal to mild symptoms of anxiety and de
pression. Chatbots like Leora may improve access, provide 
uninterrupted support, and triage individuals who are 
unwilling or unable to see mental health therapists (17). 
Importantly, integration of AI in psychiatry holds promise 
for assessments of early depression, interventions, and 
suicide prevention (17, 43, 44). For example, NLP algo
rithms can analyze online interactions (e.g., posts and 
discussions in social media platforms) to identify patterns 
and vulnerable emotional states associated with increased 
risk of self-harm (44).

Substance Use Disorders
Excessive alcohol consumption and associated mental and 
public health issues (e.g., substance use disorders, traffic 
accidents, and alcohol-related violence) could be reduced 
by the emerging advances in AI technologies (45–47). For 
example, chatbots can facilitate alcohol education among 
consumers, thus empowering them to make better decisions 
regarding alcohol consumption (45). AI algorithms could be 
a suitable alternative to traditional breathalyzers (measur
ing blood alcohol concentration) for identifying intoxicated 
individuals (46, 48). Audio-based deep-learning algorithms 
can predict an individual’s intoxication status within sec
onds on the basis of the individual’s speech recordings (46). 
Furthermore, some preliminary evidence suggests that AI 
algorithms may assist in predicting the risks and outcomes 
of substance use (47, 49, 50).

CONCLUSIONS

In summary, LLMs may represent a revolution in medicine, 
including psychiatry and clinical neurosciences. However, 
the impact of AI on these fields remains uncertain. AI 
models appear to be promising in medical education, 
clinical training, and basic and translational research. 
Nonetheless, there is lack of dissemination of AI-related 
resources among medical school faculty and clinicians 
and, consequentially, insufficient technology integration 
into medical curricula. These technologies also have a role 
in fields relying on analyses of large data sets (e.g., medical 
records, biostatistics, and medical imaging). Taken to
gether, these technologies have the potential to improve 
the delivery of mental health services and clinical 
outcomes.

The integration of AI innovations into mental health 
clinical practice may increase the efficiency and reduce the 
clinical caseload of doctors, therapists, and ancillary health 
care professionals. Thus, these innovations could allow care 
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providers to focus on higher-level functions requiring 
human judgment. AI models, such as ChatGPT, may 
function best as supporting tools, not as substitutes for 
physicians and other medical professionals. Furthermore, 
governmental and health care agencies need to develop 
appropriate guidelines, including strategies to mitigate 
potential risks (e.g., data breaches and unauthorized ac
cess) and undesirable outcomes (e.g., overreliance on AI 
and digital automation technologies could result in re
duced human empathy, creativity, reasoning, and emo
tional expression, affecting social skills and family and 
peer interactions), because the progression of AI, LLMs, 
and similar technologies seems unstoppable in the 
metaverse era.
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