The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use, including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

×

References

  • 1 Polanczyk G, de Lima MS, Horta BL, et al.: The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 2007; 164:942–948 Crossref, MedlineGoogle Scholar
  • 2 Franke B, Neale BM, Faraone SV: Genome-wide association studies in ADHD. Hum Genet 2009; 126:13–50 Crossref, MedlineGoogle Scholar
  • 3 Biederman J, Spencer T: Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiatry 1999; 46:1234–1242 Crossref, MedlineGoogle Scholar
  • 4 Pliszka SR, McCracken JT, Maas JW: Catecholamines in attention-deficit hyperactivity disorder: current perspectives. J Am Acad Child Adolesc Psychiatry 1996; 35:264–272 Crossref, MedlineGoogle Scholar
  • 5 Arnsten AF: Stimulants: therapeutic actions in ADHD. Neuropsychopharmacology 2006; 31:2376–2383 Crossref, MedlineGoogle Scholar
  • 6 Arnsten AF, Steere JC, Hunt RD: The contribution of alpha 2-noradrenergic mechanisms of prefrontal cortical cognitive function: potential significance for attention-deficit hyperactivity disorder. Arch Gen Psychiatry 1996; 53:448–455 Crossref, MedlineGoogle Scholar
  • 7 Greene CM, Bellgrove MA, Gill M, et al.: Noradrenergic genotype predicts lapses in sustained attention. Neuropsychologia 2009; 47:591–594 Crossref, MedlineGoogle Scholar
  • 8 Lario S, Calls J, Cases A, et al.: MspI identifies a biallelic polymorphism in the promoter region of the alpha 2A-adrenergic receptor gene. Clin Genet 1997; 51:129–130 Crossref, MedlineGoogle Scholar
  • 9 Hoehe MR, Berrettini WH, Lentes KU: Dra I identifies a two-allele DNA polymorphism in the human alpha 2-adrenergic receptor gene (ADRAR), using a 5.5 kb probe (p ADRAR). Nucleic Acids Res 1988; 16:9070 Crossref, MedlineGoogle Scholar
  • 10 Doyle AE, Faraone SV, Seidman LJ, et al.: Are endophenotypes based on measures of executive functions useful for molecular-genetic studies of ADHD? J Child Psychol Psychiatry 2005; 46:774–803 Crossref, MedlineGoogle Scholar
  • 11 Durston S: Converging methods in studying attention-deficit/hyperactivity disorder: what can we learn from neuroimaging and genetics? Dev Psychopathol 2008; 20:1133–1143 Crossref, MedlineGoogle Scholar
  • 12 Kim BN, Kim JW, Kang H, et al.: Regional differences in cerebral perfusion associated with the alpha-2A-adrenergic receptor genotypes in attention-deficit hyperactivity disorder. J Psychiatry Neurosci 2010; 35:330–336 Crossref, MedlineGoogle Scholar
  • 13 Cho SC, Kim JW, Kim BN, et al.: Possible association of the alpha-2A-adrenergic receptor gene with response time variability in attention-deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:957–963 Crossref, MedlineGoogle Scholar
  • 14 van Ewijk H, Heslenfeld DJ, Zwiers MP, et al.: Diffusion tensor imaging in attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Neurosci Biobehav Rev 2012; 36:1093–1106 Crossref, MedlineGoogle Scholar
  • 15 Kim YS, Cheon KA, Kim BN, et al.: The reliability and validity of Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version- Korean version (K-SADS-PL-K). Yonsei Med J 2004; 45:81–89 Crossref, MedlineGoogle Scholar
  • 16 So YK, Noh JS, Kim YS, et al.: The reliability and validity of Korean parent and teacher ADHD rating scale. J Korean Neuropsychiatr Assoc 2002; 41:283–289 Google Scholar
  • 17 Greenberg LM, Waldman ID: Developmental normative data on the test of variables of attention (T.O.V.A.). J Child Psychol Psychiatry 1993; 34:1019–1030 Crossref, MedlineGoogle Scholar
  • 18 Wilke M, Holland SK, Altaye M, et al.: Template-O-Matic: a toolbox for creating customized pediatric templates. Neuroimage 2008; 41:903–913 Crossref, MedlineGoogle Scholar
  • 19 Solé X, Guinó E, Valls J, et al.: SNPStats: a web tool for the analysis of association studies. Bioinformatics 2006; 22:1928–1929 Crossref, MedlineGoogle Scholar
  • 20 Barkley RA: Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 1997; 121:65–94 Crossref, MedlineGoogle Scholar
  • 21 Arnsten AF, Dudley AG: Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoreceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention-deficit hyperactivity disorder. Behav Brain Funct 2005; 1:2 Crossref, MedlineGoogle Scholar
  • 22 Berridge CW, Devilbiss DM, Andrzejewski ME, et al.: Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 2006; 60:1111–1120 Crossref, MedlineGoogle Scholar