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Serious mental illness (SMI) is disabling, and current interventions are ineffective for many. This exploratory study sought to
demonstrate the feasibility of applying topological data analysis (TDA) to resting-state functional connectivity data obtained
from a heterogeneous sample of 235 adult inpatients to identify a biomarker of treatment response. TDA identified two groups
based on connectivity between the prefrontal cortex and striatal regions: patients admitted with greater functional con-
nectivity between these regions evidenced less improvement from admission to discharge than patients with lesser con-
nectivity between them. TDA identified a potential biomarker of an attenuated treatment response among inpatients with SMI.
Insofar as the observed pattern of resting-state functional connectivity collected early during treatment is replicable, this
potential biomarker may indicate the need to modify standard of care for a small, albeit meaningful, percentage of patients.
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Serious mental illness (SMI) is a significant cause of disability
worldwide.1 Depression, bipolar disorder, anxiety, substance
use disorders, and psychosis are among the most common
disorders in this class,2 each of which is not fully understood
and has much higher prevalence, cost, and burden than pre-
viously estimated.3 Unfortunately, interventions for many of
these disorders are ineffective for a sizable proportion of in-
dividuals. Trials of front-line medications for patients with
major depressive disorders, for example, indicate remission
rates below 50%,4 and only a minority of these patients fully
recover with medications alone.5 Furthermore, untreated
symptoms are associated with worsening disability, suffering,
and cost.6 Targeted prevention and intervention efforts are
needed to reduce disability, financial burden, and mortality
that these disorders confer.2

Contemporary medicine conceptualizes SMI as a brain
disorder.7 Resting-state functional connectivity (RSFC) de-
rived via functional MRI (fMRI) provides critical insight
into the neural bases of these disorders.8 Across existing
RSFC studies of internalizing and externalizing disorders,
aberrant connectivity of the prefrontal cortex (PFC) to other
brain regions is consistently associated with psychopathol-
ogy. In general, internalizing disorders (e.g., depression and
anxiety spectrum disorders) are related to dysfunctional
connectivity between the PFC and emotion-related brain
areas (e.g., amygdala9). Externalizing disorders (e.g., antiso-
cial behavior and substance abuse), on the other hand, are
characterized by dysfunctional connectivity between the PFC

and brain regions associated with reward/punishment (e.g.,
striatum10,11). The generalizability of these findings is limited,
however, by small, clinically homogenous samples that are
uncharacteristic of the typically highly comorbid SMI pop-
ulations seen in everyday clinical practice.

Conventional approaches used to analyze neuroimaging
data frequently rely on correlational approaches with con-
clusions based on thedegree towhichparameters share patterns
of variability. For example, our group found significant correla-
tions between interhemispheric inferior frontal gyri RSFC as
well as interhemispheric insula RSFC and a global measure of
self-reported substance use in a large, heterogeneous sample of
inpatients with SMI.12 This approach and related regression
analyses have a long and established history but are limited to an
a priori selection of a restricted number of parameters to avoid
the known problems associated with multiple comparisons.
While conservative in their conclusions, these approaches
likely contribute to the relatively slow pace of advances in the
understanding and treatment of SMI.

More recently, machine learning approaches have been
used to create models based on neuroimaging to predict
treatment response among a variety of conditions, such as
depression.13 While these approaches are more complex
than conventional bivariate analyses, the field tends to rely
on supervised learning approaches. Small sample sizes,
again, are evident across supervised as well as unsupervised
machine learning approaches.13 The current study, on the
other hand, demonstrated the feasibility of applying an agnostic
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analytic approach, topological data analysis (TDA), to RSFC
data from a large (N=235), heterogeneous SMI sample col-
lected early during the course of hospitalization to a specialty
treatment facility. Patterns of connectivity between PFC and
select brain regions associated with SMI were analyzed. This
hypothesis-generating approach allowed for comparison of
groups of patients (based on extensive patterns of connectivity)
across diagnostic categories and treatment response domains.

METHODS

Participants
Participants were 279 adult inpatients, voluntarily admitted
to a specialty hospital (November 2012–September 2014)
who consented to and completed the neuroimaging portion
of the study. Of the 279 inpatients, 44 (15.3%) were excluded
from the final analysis due to incomplete imaging data or
incomplete clinical data. Final analyses are based on the
remaining 235 inpatients with complete data.

Setting
All patients received treatment at a hospital specializing in
SMI. Most had limited benefit from prior trials of psycho-
therapy, psychopharmacology, and/or psychiatric hospitali-
zations. Typical lengths of stay are 6–8 weeks, allowing for
intensive psychotherapeutic and psychopharmacologic inter-
ventions in the context of a therapeuticmilieu. Hospital-based
interventions include: maximizing medication manage-
ment, individual psychotherapy, group psychotherapy (pro-
cess, psychoeducational), couples and family therapy, as well
as structured leisure time activities. Chemical dependency
and eating disorders evaluation and treatment supplement
standard of care as indicated.

Procedures
Clinical data were collected as part of standard of care in
the context of the hospital’s ongoing efforts to measure
the effectiveness of treatment.14 Assessments were done
throughout the course of the hospitalization; however, only
data collected at admission and discharge were used in the
present study.

Neuroimaging: Acquisition, Preprocessing, and
Resting-State Analysis
In the neuroimaging phase of the study, participants un-
derwent an fMRI protocol early in the course of their hospi-
talization; details are discussed below in the Results section.
Using a Siemens 3T Trio scanner, participants were scanned
in a series of MRI sequences including 1) a T1-weighted
structural scan (4.5-minute structural MPRAGE sequence,
TE=2.66 ms, TR=1200 ms, flip angle=12°, 2563256 matrix,
160 1-mm axial slices at 13131 mm voxels) to obtain de-
tailed anatomy and 2) resting-state fMRI for 5minutes while
participants viewed a crosshair (TE=40 ms, TR=2 seconds,
flip angle=90°, 3.433.434 mm voxels). Participants were
instructed to “let their mind wander.” RSFC data were

preprocessed using SPM8 (The Wellcome Trust, London),
including realignment to the first time series image, coregistra-
tion to the mean image, normalization to the Montreal Neuro-
logical Institute (MNI) echo planar imaging template, and
smoothing with a 6-mm full width at high maximum Gauss-
ian smoothing kernel. Individual time points with exces-
sivemovementwere removedusing the softwareART (ARtifact
detection Tools, Susan Whitfield-Gabrieli, MIT [http://web.
mit.edu/swg/art/art.pdf ]) utilizing the default parameters.
Thus, data from all patients were included in the final analysis.

Regions of interest (ROI) for inferior, medial, and supe-
rior prefrontal cortex (frontal gyri); nucleus accumbens;
putamen; amygdala; insula; anterior cingulate cortex; sup-
plemental motor area; striatum; caudate; globus pallidus;
habenula; dorsal, medial raphe; Broadmann area 25; medial
vestibular cortex; septum verum; locus coeruleus; lingual
gyrus; paracentral lobule; precuneus; and cuneus were cre-
ated in AFNI15 using the MNI atlas. These ROIs were se-
lected due to prior literature associating them with serious
mental illness and/or because of their biological connection
to areas implicated in prior research (e.g., locus coeruleus
downstream connections from the habenula).16

The MatLab CONN toolbox17 was used to analyze RSFC
data. Graymatter, whitematter, and cerebrospinal fluidwere
segmented. Movement identified during preprocessing was
included as six regressors of no interest; data with excessive
movement were removed. Cerebrospinal fluid and white
matter were also included as regressors. After processing,
Fisher’s z-transformed correlation coefficients between the
different seeds for each subject were identified and ana-
lyzed. All pairs of regions were analyzed, and RSFC recorded
for each subject. For further details regarding the imaging
protocol, see Viswanath and colleagues.12

Measures
Demographic variables and treatment histories were col-
lected using a standardized survey.14 Structured Clinical In-
terview for DSM-IV Axis I [SCID-I18] and Axis II [SCID-II19]
interviews were conducted by masters-level research staff.

The primary outcome measure in this study was the
12-item World Health Organization Disability Assessment
Schedule 2.0 (WHO-DAS 2.020). This self-report measure
of functional disability associated with illness was selected
over other disease- and symptom-specific measures given
that 1) significant disability is associated with SMI1; 2) The
Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (DSM-5) Disability Study Group endorsed the
use of the WHODAS 2.0 to replace the Global Assessment
of Functioning with the revised diagnostic classification
system, emphasizing that it is the best current measure of
disability for routine clinical use21; and 3) there is known
diagnostic heterogeneity and significant comorbidity among
the patient population treated at the study institution.22 The
WHO-DAS 2.0 quantifies disability associated with illness re-
gardless of underlying etiology or number of medical/psychiatric
comorbidities,23 resulting in an ideal cross-cutting measure of
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TABLE 1. Resting-State Functional Connectivity Pairings Contributing to Grouping of Patients

Region of Interest 1 Region of Interest 2
Kolmogorov-Smirnov

Test Statistic
Family-Wise Error-Corrected

p Value
Connectivity From Prefrontal

Cortex [PFC] to Striatal Regions

Right inferior PFC Right striatum 0.9009 ,0.0001 Yes
Right medial PFC Right striatum 0.8375 ,0.0001 Yes
Left inferior PFC Right striatum 0.8333 0.0033 Yes
Left inferior PFC Left striatum 0.8153 0.003 Yes
Left ACC Right putamen 0.8150 0.0032
Right inferior PFC Left superior PFC 0.8063 0.0035
Right inferior PFC Left striatum 0.7973 ,0.0001 Yes
Right superior PFC Left striatum 0.7966 0.0019 Yes
Left superior PFC Left precentral gyrus 0.7928 0.0002
Left superior PFC Right precentral gyrus 0.7928 0.0027
Right medial PFC Left striatum 0.7879 0.0009 Yes
Right ACC Right putamen 0.7879 0.0032
Right superior PFC Right putamen 0.7789 0.0032 Yes
Right inferior PFC Right putamen 0.7741 ,0.0001 Yes
Left ACC Right striatum 0.7696 ,0.0001
Right superior PFC Right precentral gyrus 0.7564 0.0045
Left inferior PFC Left nAcc 0.7523 0.0029
Right medial PFC Right putamen 0.7519 0.0009 Yes
Left medial PFC Right caudate 0.7519 0.0032 Yes
Right medial PFC Left caudate 0.7477 0.0038 Yes
Left medial PFC Left striatum 0.7474 0.001 Yes
Right superior PFC Left SMA 0.7474 0.0042
Left medial PFC Right putamen 0.7471 0.0034 Yes
Right medial PFC Left GP 0.7387 0.0144 Yes
Right inferior PFC Left ACC 0.7380 0.0009
Left ACC Left striatum 0.7294 ,0.0001
Right superior PFC Left precentral gyrus 0.7294 0.0034
Right inferior PFC Right ACC 0.7204 0.0032
Right superior PFC Left putamen 0.7200 0.0033 Yes
Left inferior PFC Right nAcc 0.7159 0.0039
Right ACC Right striatum 0.7152 ,0.0001
Right precentral gyrus Right striatum 0.7117 0.0038
Right superior PFC Right striatum 0.7114 0.0009 Yes
Right medial PFC Right nAcc 0.7114 0.0034
Left medial PFC Right superior PFC 0.7072 0.006
Left ACC Right caudate 0.7062 0.0039
Left inferior PFC Right putamen 0.7024 0.0037 Yes
Left superior PFC Right putamen 0.6972 0.0037 Yes
Left inferior PFC Left putamen 0.6933 0.0039 Yes
Right medial PFC Right precentral gyrus 0.6933 0.0045
Left precentral gyrus Right striatum 0.6888 0.0036
Left medial PFC Right nAcc 0.6881 0.0037
Right ACC Left striatum 0.6847 0.002
Left medial PFC Right precentral gyrus 0.6847 0.0036
Right medial PFC Right caudate 0.6840 0.0034 Yes
Right superior PFC Right nAcc 0.6798 0.0039
Left inferior PFC Left ACC 0.6750 0.0034
Left ACC Left precentral gyrus 0.6750 0.0034
Left inferior PFC Right ACC 0.6750 0.0036
Left ACC Right precentral gyrus 0.6705 0.0034
Right inferior PFC Left caudate 0.6663 0.0093 Yes
Right ACC Left precentral gyrus 0.6615 0.0033
Right inferior PFC Left GP 0.6615 0.0101 Yes
Right ACC Left precentral gyrus 0.6570 0.0035
Left medial PFC Right striatum 0.6563 0.0002 Yes
Left medial PFC Left caudate 0.6521 0.0037 Yes
Left ACC Left caudate 0.6518 0.0038
Right inferior PFC Right precentral gyrus 0.6486 0.0043
Left inferior PFC Right superior PFC 0.6483 0.0159
Right inferior PFC Left medial PFC 0.6441 0.0079
Right amygdala Right inferior PFC 0.6441 0.0416

continued
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TABLE 1, continued

Region of Interest 1 Region of Interest 2
Kolmogorov-Smirnov

Test Statistic
Family-Wise Error-Corrected

p Value
Connectivity From Prefrontal

Cortex [PFC] to Striatal Regions

Right medial PFC Left superior PFC 0.6348 0.0038
Right amygdala Left inferior PFC 0.6306 0.0345
Right medial PFC Left precentral gyrus 0.6258 0.006
Right inferior PFC Left putamen 0.6254 0.0028 Yes
Right nAcc Right precentral gyrus 0.6251 0.0381
Left superior PFC Left putamen 0.6247 0.0042 Yes
Left superior PFC Right striatum 0.6202 0.0034 Yes
Left precentral gyrus Right caudate 0.6168 0.0239
Right amygdala Right medial PFC 0.6081 0.0163
Right amygdala Left medial PFC 0.6078 0.0097
Left medial PFC Left superior PFC 0.6074 0.0112
Left medial PFC Left precentral gyrus 0.6033 0.0033
Left inferior PFC Right caudate 0.5988 0.0371 Yes
Right superior PFC Right caudate 0.5984 0.0041 Yes
Left medial PFC Left putamen 0.5984 0.0052 Yes
Left amygdala Left inferior PFC 0.5981 0.025
Left medial PFC Left nAcc 0.5977 0.0117
Right inferior PFC Right caudate 0.5942 0.0077 Yes
Left superior PFC Right nAcc 0.5939 0.0292
Left ACC Left putamen 0.5932 0.0034
Left superior PFC Right superior PFC 0.5894 0.0065
Right superior PFC Left superior PFC 0.5894 0.0065
Right inferior PFC Right nAcc 0.5804 0.0045
Left nAcc Right putamen 0.5797 0.0037
Right insula Right striatum 0.5797 0.0142
Right medial PFC Left putamen 0.5762 0.0039 Yes
Right inferior PFC Left nAcc 0.5752 0.0034
Right superior PFC Left GP 0.5710 0.0073 Yes
Right inferior PFC Right superior PFC 0.5631 0.0144
Right ACC Left caudate 0.5620 0.0147
Right superior PFC Left caudate 0.5613 0.0054 Yes
Right medial PFC Left ACC 0.5579 0.007
Right inferior PFC Left accumbens 0.5572 0.006
Right medial PFC Left nAcc 0.5537 0.032
Right ACC Left putamen 0.5534 0.0045
Left medial PFC Right ACC 0.5530 0.0454
Right precentral gyrus Right putamen 0.5495 0.0419
Right inferior PFC Right GP 0.5492 0.0079 Yes
Left superior PFC Left SMA 0.5440 0.0065
Left accumbens Right putamen 0.5398 0.023
Right ACC Right caudate 0.5392 0.0086
Left nAcc Left putamen 0.5388 0.0082
Right amygdala Left nAcc 0.5353 0.0097
Right accumbens Right precentral gyrus 0.5353 0.0139
Left medial PFC Left ACC 0.5353 0.0277
Left superior PFC Left striatum 0.5347 0.0034 Yes
Right precentral gyrus Right caudate 0.5315 0.0397
Right inferior PFC Right insula 0.5305 0.0383
Right inferior PFC Left insula 0.5298 0.0167
Left inferior PFC Left accumbens 0.5260 0.0051
Right precentral gyrus Left striatum 0.5218 0.0066
Right precentral gyrus Left putamen 0.5177 0.0156
Left precentral gyrus Left striatum 0.5170 0.0081
Left amygdala Left medial PFC 0.5163 0.0222
Left inferior PFC Right inferior PFC 0.5163 0.0468
Right inferior PFC Left inferior PFC 0.5163 0.0468
Right accumbens Left precentral gyrus 0.5125 0.0312
Left superior PFC Right caudate 0.5121 0.0354 Yes
Left superior PFC Left GP 0.5118 0.0367 Yes
Right inferior PFC Right accumbens 0.5000 0.0067
Left accumbens Left putamen 0.5000 0.043

continued
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treatment outcome in a multimodal treatment setting with
myriad diagnostic presentations. The measure assesses six
domains of functioning corresponding to International Classi-
fication of Functioning, Disability and Health codes: cognition,
mobility, self-care, getting along, life activities and partici-
pation. The measure has sound psychometric properties and
is widely used.20,23 Raw scores were used for all analyses.

The Patient Health Questionnaire-15 (PHQ-1524) is a broad-
band, self-report measure of somatic complaints with sound
psychometric properties that was included in subsequent
analyses as a covariate (discussed below). Physical/medical
comorbidities are common among individuals with SMI,25

including among patients treated at the study hospital,22 and
have the potential to significantly contribute to disability.

Data Analyses
TDA was done using the Ayasdi 3.0 platform (Ayasdi Inc.,
Menlo Park, Calif.), allowing for an exploration of the shape
of the RSFC data. Briefly, TDA is a process of capturing
geometric information about data in the form of topolog-
ical summaries, represented as networks on the Ayasdi
3.0 platform.26 Unlike traditional networks where nodes
represent individuals and edges between nodes encode a
measure of similarity between patients, each node in a to-
pological network contains a number of patients who are
similar over select characteristics—in this analysis, RSFC
parameters. Nodes in the network are connected to one
another via edges; nodes contain participants who are sim-
ilar. The topological analyses and subsequent creation of the
network are contingent on two parameters: metric and lens.
Metrics are a measurement of similarity and measure the
distance between two points, typically between rows in a
data set. Lenses are filters that convert the data set into
a vector, such that each row of data in the data set provides a
real number in the vector. Essentially, lenses convert every
row in a data set into a single number. Lenses can come from
geometry, statistics or any other branch of mathematics.
Lenses are used to create overlapping bins in the data set and
allow the data to be clustered. Metrics and lenses are used
together to complete the topological analysis. Details about
the mathematical underpinnings of the construction of the
topological network can be found elsewhere.26,27

Topological networks were generated based on 204 pos-
sible connections between the right and left PFC from a total
of 648 pairing of ROIs that have been associated with SMI
as detailed above. They were created using six default com-
binations of metric and lens parameters on the Ayasdi 3.0

platform, including 1) correlation andmultidimensional scaling
(coordinates 1 and 2); 2) correlation and L-infinity centrality; 3)
correlation and neighborhood lens 1 and 2; 4) variance nor-
malized Euclidean and principal component analysis (coordi-
nates 1 and 2); 5) variance normalized Euclidean and L-infinity
centrality; and 6) variance normalized Euclidean and neigh-
borhood lens 1 and 2. Details about the six combinations
of metric and lens are published elsewhere.26,27 Strength of as-
sociation among RSFC brain regions was based on Kolmogorov-
Smirnov (K-S) test statistic with associated p value. K-S
statistics range in value from 0 to 1 with higher values being
rarer than lower values and indicative of larger difference
between groups.28,29 Given the high number of possible con-
nections among brain regions and the increased likelihood of
spurious findings, we employed a permutation-based correc-
tion to family wise error rate (family-wise error-corrected
a=0.05) to determine statistically-significant RSFC parameters
that contributed to the generation of the topological network.

Patients who shared the same or neighboring nodes in a
TDA network were identified as being similar and were
grouped together; theywere then comparedwith the remaining
sample. Comparisons between these two groups of patients
were done across clinical data collected at admission using
independent samples t tests and Fisher’s exact test for contin-
uous and categorical variables, respectively. Group differences
in treatment outcome (discharge scores on theWHO-DAS2.0)
were examinedusing analysis of covariance (ANCOVA). Given
their potential to bias discharge findings, ANCOVA models
employed to evaluate treatment outcomes included the fol-
lowing covariates: admission levels of disability based on the
WHO-DAS 2.0, admission levels of somatic complaints based
on the PHQ-15, and any other potential differences in socio-
demongraphic and clinical characteristics observed at ad-
mission. These analyses were conducted using SAS/STAT
software, Version 9.3 (Cary, N.C.).

Ethics
This study conforms to guidelines set forth in the latest version
of the Declaration of Helsinki. The Baylor College of Medi-
cine’s Institutional Review Board approved the study design.
Participants provided informed consent to participate in the
study after receiving full explanation of all procedures.

RESULTS

Of the six TDA analytic strategies evaluated, only variance nor-
malized Euclidean and L-infinity centrality provided separation

TABLE 1, continued

Region of Interest 1 Region of Interest 2
Kolmogorov-Smirnov

Test Statistic
Family-Wise Error-Corrected

p Value
Connectivity From Prefrontal

Cortex [PFC] to Striatal Regions

Left inferior PFC Left caudate 0.4636 0.0154 Yes
Left superior PFC Left caudate 0.4505 0.0403 Yes
Left precentral gyrus Left putamen 0.4501 0.0274

a ACC=anterior cingulate cortex; GP=globus pallidus; nAcc=nucleus accumbens; SMA=supplemental motor area.
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of patients based on connectivity between PFC and select brain
regions. Two groupswere represented: group 1 (N=13; 5.5%) and
group 2 (N=222; 94.5%). Therewas no difference between group
1 (20.2616.0 days) and group 2 (24.3622.8 days) in duration
of time that elapsed between date of admission and date of
the fMRI (t=1.3, df=233, p=0.19). Diffuse, global RSFC drove
the observed grouping of patients. Of note, connectivity
between PFC and striatal brain regions accounted for 32.8%
(41/125) of the significant differences between groups across
RSFC data, including the most prominent (K-S$0.90) of the
connectivity parameters, between the right inferior PFC
and right striatum (K-S=0.9009, p,0.0001) (Table 1). As an
exemplar of the RSFC derived groupings, Figure 1 represents
color-coded grouping of patients based on connectivity be-
tween right inferior PFC and right striatum.

The study sample completed all self-report assessments
within days of their admission; group 1 (4.065.6 days) did
not significantly differ from group 2 (4.466.9 days) in dura-
tion of time that elapsed between date of admission and date
of assessment (t=0.22, df=233, p=0.83). On average patients
met criteria for more than 3 axis I disorders at admission.
Depressive, anxiety and substance use disorders were most
common. Bipolar spectrum disorders were evident in almost
20% of the sample. Psychotic spectrum disorders were relatively
less common but represented. Almost 40% of the sample met
criteria for at least onepersonality disorder. Patients had required
considerable previous treatment: multiple previous therapists,

psychiatrists/prescription pro-
viders, acute psychiatric hos-
pitalizations, and extended
(.5 days) psychiatric hospital-
izations. Between group (group
1 versus group 2) comparisons
indicated no significant differ-
ences across sociodemographic
and prior service utilization
characteristics (Table 2). Al-
though borderline personality
disorder was most common,
group 1 was more likely to re-
ceive a diagnosis of antisocial
personality disorder (15.38%)
than group 2 (1.80%), p=0.038.

After controlling for self-
reported disability at admis-
sion (p,0.0001), diagnosis of
antisocial personality disor-
der (p=0.046), and somatic
complaints (p=0.582), results
indicate that group 1 (N=13)
evidenced less improvement
than group 2 (N=222) from
admission to discharge on
theWHO-DAS 2.0 total score
(F=4.35, df=1, 230, p=0.0381).
Relative to their age-matched,

normative peers,30 group 1 moved from the severe range of
disability (90–95th percentile; 9.9267.81) to the moderate
range of disability (85–89th percentile; 6.6267.12), while
group 2moved from the extreme range of disability (95–99th
percentile; 15.0269.26) to the mild range of disability (75th–
84th percentile; 4.8265.37). (Figure 2). Qualitatively, 30.8%
of group 1 scored in the remission category at discharge
(normal range of functioning in terms of WHO-DAS 2.0),
whereas 46.0% of group 2 scored in the remission category
at discharge. Additional analyses indicated that group
1 evidenced less improvement at discharge across two of six
domains of disability on the WHO-DAS 2.0 after controlling
for the corresponding admission disability domain, diagnosis
of antisocial personality disorder, and somatic complaints.
See Table 3 for details. In absolute terms, group 1 (3.365.19)
evidenced approximately one-third of the change in WHO-
DAS 2.0 total score from admission to discharge compared
with group 2 (10.1967.95), t(233)=3.08, p=0.0023. Qualita-
tively, 30.8% of group 1 scored in the remission category at
discharge (normal range of functioning in terms of WHO-
DAS 2.0), whereas 46.0% of group 2 scored in the remission
category at discharge.

DISCUSSION

Concertedmultidisciplinary efforts have identified a number
of biomarkers of SMI; yet, robust, replicable, and clinically

FIGURE 1. Topological Data Analysis (TDA) Results Between Group 1 and Group 2a

aGroup 1 (N=13) in red/orange versus group 2 (N=222) in blue/green; Kolmogorov-Smirnov test=0.9009,
p,4.2531028. Warmer colors (reds, oranges) represent greater connectivity between the two regions;
whereas, cooler colors (blues, greens) represent lesser connectivity between the two brain regions.
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actionable biomarkers re-
main elusive.7,31 Through an
agnostic, exploratory analyt-
ical approach, the current
study examined RSFC of the
PFC in the largest, clinically
heterogeneous SMI popu-
lation collected to date. This
novel analytic approach iden-
tified a subset of patients
who evidenced diffuse, global
hyperconnectivity with pri-
marily stronger connectivity
between the PFC and striatal
regions. Subsequent analyses
suggest that patients in the
group with diffuse, global
hyper-connectivityweremore
likely to meet formal criteria
for an antisocial personality
disorder diagnosis compared
with patients with lesser con-
nectivity. Additionally, hyper-
connectivity was associated
with an attenuated treatment
response after weeks of inten-
sive, multimodal treatment –
even after controlling for
baseline characteristics (e.g.,
baseline disability, presence
of antisocial personality dis-
order, baseline somatic com-
plaints). Thus, the attenuated
treatment response cannot be accounted for solely by the
presence of antisocial personality disorder. Despite receiving
the same intensive treatment, a small group of patients ex-
perienced an attenuated treatment response and discharged
in the moderate range of disability. Only 30.8% of this group
would be classified as being in remission upon discharge (i.e.,
falling in the normal range of functioning on the WHO-DAS
2.0) comparedwith 46.0%patients in the other group. If these
findings can be replicated, the policy implications of a bio-
marker of differential treatment response (15.2% fewer patients
remitting) potentially could have significant repercussions for
the broader SMI patient population.

Recently, dopaminergic-mediated pathways between the
PFC and striatum have been implicated in neurobiological
models of anhedonia in depression. Treadway and Zald32

suggested that motivational aspects of the reward circuitry
could distinguish varieties of anhedonia based on deficits in
pleasure andmotivation. They introduced the term “decisional
anhedonia” to address the influence of anhedonia on reward
decision-making. Perhaps a high degree of connectivity be-
tween the PFC and striatum reflects a lack of flexibility in the
face of potentially reinforcing stimuli and is reflective of a
treatment-refractory neurobiology among individuals with SMI,

especially among individuals meeting criteria for antisocial
personality disorder. Alternatively (or perhaps additionally),
this hyperconnectivity may be a marker of maladaptive, thrill-
seeking personality traits, as is commonamongmany individuals
with antisocial personality disorder or substance use disorders.11

Insofar as the observed pattern of RSFC collected early during
treatment is replicable in a future sample, this potential bio-
marker may indicate the need for modification of standard of
care for patients who are likely to evidence an attenuated
treatment response such as the use of pharmacogenomics test-
ing to guide medical decision-making (e.g., evaluation of poly-
morphisms that may affect dopaminergic activity33;).

Findings from this study also may be useful in advancing
the overarching goal of the NIMHResearch Domain Criteria
(RDoC) initiative to develop an empirically derived system
for diagnosing and treating mental disorders based on ge-
netic, neural and behavioral data.34 Specifically, RDoC is
calling for a new approach to investigating psychopathology
beyond traditional diagnostic boundaries because studies
evaluating the latent structure of adult personality pathology
at the symptom level have found only modest support for
discrete DSM-based disorders (see35 for a review). Indeed,
there has been a growing interest in considering models that

TABLE 2. Comparison of Sociodemographic, Psychiatric, and Service Utilization Characteristics
Between Prefrontal Cortex Resting-State Functional Connectivity-Identified Groups

Characteristic Group 1 (N=13) Group 2 (N=222) p

Sociodemographic
Age (mean6standard deviation [years]) 30.92611.5 30.76611.64 0.961
Sex, % (N) male 69.23 (9) 57.21 (127) 0.165
Ethnicity, % (N) White 84.62 (11) 89.59 (198) 0.546
Marital status, % (N) single/never
married

69.23 (9) 68.35 (149) 0.532

Education, % (N) some college or
greater

100.0 (13) 90.5 (201) 0.656

Vocational status, % (N) unemployed
(30 days)

69.23 (9) 57.47 (128) 0.300

Psychiatric diagnostic
Axis I disorders (mean6standard
deviation)

2.6262.02 3.0661.65 0.348

Axis II disorders (mean6standard
deviation)

0.6260.96 0.6360.86 0.958

Substance use disorders, % (N) 38.46 (5) 64.68 (141) 0.076
Major depressive disorders, % (N) 53.85 (7) 66.06 (144) 0.381
Bipolar spectrum, % (N) 15.38 (2) 20.18 (44) .0.999
Anxiety spectrum, % (N) 69.23 (9) 60.09 (131) 0.574
Psychotic spectrum, % (N) 15.38 (2) 15.38 (12) 0.181
Antisocial personality disorder, % (N) 15.38 (2) 1.8 (4) 0.038
Avoidant personality disorder, % (N) 0 (0) 19.37 (43) 0.133
Borderline personality disorder, % (N) 30.77 (4) 20.72 (46) 0.483
Any personality disorder, % (N) 38.5 (5) 43.6 (99) 0.781
Mental health service utilization
Outpatient therapists (lifetime) 2.7762.62 3.8962.88 0.176
Psychopharmacologists (lifetime) 2.4661.61 2.962.26 0.496
Hospitalizations for acute psychiatric
care (lifetime)

1.5461.90 1.2664.45 0.827

Hospitalizations for extended
psychiatric care (lifetime)

0.7761.09 0.9462.16 0.776

Length of stay (mean6standard
deviation)

45.69617.82 50.98616.48 0.264
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evaluate general factors that account for both common vari-
ances shared across diagnoses and unique sources of variance
thatmay representmore specific forms of psychopathology.36,37

As yet, putative meta-structures of psychopathology have yet

to be validated with biological data. It is against this back-
ground that the analytic approach of the current study has
potential value.

While this study has a number of strengths including a
relatively large, heterogeneous sample typical of real world
patients, with extensive imaging data and objective mea-
sures of clinical functioning, limitations must be acknowl-
edged. The data analytic approachwas by design exploratory
and could have yielded spurious findings given the sheer
number of RSFC brain regions examined. However, select-
ing PFC connections to select brain regions, correcting for
multiple comparisons using among the most balanced cor-
rection procedures (i.e., permutation-based correction of
family-wise error),38 as well as limiting interpretation of
significant findings to a very high threshold for statistical
significancewere a priori decisions to increase the likelihood
of finding a true signal. Nonetheless, replication of these
findings is critical before using connectivity data to guide
medical decision-making on the individual level. Data col-
lection for a validation study is currently underway; how-
ever, a large sample will be necessary to be sufficiently
powered to replicate findings given the limited numbers of
patients with an attenuated treatment response (5.5%) com-
pared with the rest of the sample. We anticipate recruiting
another 300 participants for the validation study and will use
findings from this study to employ more traditional analytic
approaches based on a priori hypotheses. Future analytic
approaches with a large enough sample may also include
appropriately selected cross-validation techniques.39 Ad-
ditionally, though it is possible that extreme values and
violations of underlying assumptions of normally distrib-
uted data might have biased findings, this is unlikely given
1) the large sample size (N=235) and associated robustness
that it provides to the influence of outliers40; 2) reliance on
the nonparametric, K-S statistics to establish strength of
association given that it is essentially an analysis of ranks
and does not assume an underlying distribution to the data28;
and 3) post hoc analyses of all of the RSFC data revealed
no violations of the underlying assumptions of normality
(Shapiro-Wilks) and only one significant difference (out of a
possible 125 RSFC parameters) between groups’ standard
deviations (F’; right inferior PFC to left superior PFC,
p=0.0001). Despite limitations, the exploratory, novel data
analytic approach applied to RSFC data in this study rep-
resents a paradigm shift from more traditional, hypothesis-
driven approaches to explore clinical phenomenology and
evaluation of interventions. Such approaches may be nec-
essary to increase the pace of discovery to address the global
burden of SMI.
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FIGURE 2. Comparison of Response to Treatment Between
Group 1 (Higher Degree of Connectivity Between Prefrontal
Cortex [PFC] and Striatal Brain Regions) Compared With Group 2a
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a From admission to discharge, group 1 moved from the severe range of
disability (9.9267.81) to the moderate range of disability (6.6267.12),
while group 2 moved from the extreme range of disability (15.0269.26)
to the mild range of disability (4.8265.37). WHO-DAS 2.0=World
Health Organization Disability Assessment Schedule, Version 2.0.

TABLE 3. Group 1 Versus Group 2 Comparison of Disability
Domains on the World Health Organization Disability
Assessment Schedule 2.0

Domain

Group 1 (N=13)
(Mean6Standard

Deviation)

Group 2 (N=222)
(Mean6Standard

Deviation) p

Cognition 0.867
Admission 2.3862.26 2.7262.12
Discharge 1.0061.68 0.97361.20

Mobility 0.466
Admission 0.3160.85 1.3861.77
Discharge 0.5461.13 0.5061.15

Self-care 0.023
Admission 0.5461.45 0.8261.57
Discharge 0.6961.11 0.2060.71

Getting along 0.078
Admission 1.5461.90 2.8162.08
Discharge 1.3161.38 1.0061.36

Life activities 0.044
Admission 2.4661.76 3.3562.28
Discharge 1.3861.39 0.9061.23

Participation 0.067
Admission 2.6962.06 3.9562.24
Discharge 1.6961.75 1.2661.40
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