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FIGURE 1. Distribution of glucagon-like peptide 1 (GLP-1) 
receptors in the brain. GLP-1 receptors have a seven- 
transmembrane structure that interacts with alpha, beta, 
and gamma subunits of G proteins (Gα, Gβ, and Gγ, 
respectively) when activated and is inhibited by β-arrestin 
(βarr) (A). GLP-1 receptors are expressed throughout the 
central nervous system. Relevant structures are color coded 
and overlayed onto a sagittal section (B) and a coronal section 
(C) of the brain (1). GLP-1 receptors mediate physiological 
actions of GLP-1, which include the regulation of glucose 
homeostasis (decreasing glucose secretion), appetite control 
(i.e., cravings and satiety), body weight management, 
metabolic regulation, glycogen synthesis in skeletal muscle 
and liver, gastric peristalsis (reducing gastric emptying), lipid 
metabolism regulation and modulation of fat absorption, 
cardiovascular regulation, and neurological function (2–5).

FIGURE 2 and COVER. Schematic of the mesocorticolimbic 
pathways that mediate eating behavior and appetite (simpli
fied), overlayed onto a sagittal section of the human brain. 
Glucagon-like peptide 1 (GLP-1) is synthesized in the neurons 
of the nucleus tractus solitarius (NTS), which project to the 
reward centers of the brain. GLP-1 receptors are also 
expressed in mesolimbic regions of the brain, such as the 
ventral tegmental area (VTA) and the nucleus accumbens 
(NAc), where GLP-1 mediates (in part) the neural mechanisms 
of reward and motivation associated with food intake (6–9). 
The mesolimbic circuit relays dopaminergic signaling from 
the VTA to the NAc, an area linked to motivation. The VTA and 
the striatum (St) are linked to reward behavior. The cortical 
portion of the reward circuit (mesocortical pathway) connects 
the VTA to the frontal cortex, which includes the anterior 
cingulate cortex (ACC), prefrontal cortex (PFC), and 
orbitofrontal cortex (OFC). The OFC is a key area for 
cognitive processes such as decision making and memory 
(10). The amygdala (A) is linked to regulation of appetite in 
response to emotions. GLP-1 receptor agonist activity in the 
central amygdala is speculated to mediate (in part) 
anorexigenic effects and mechanisms linked to emotional 
and motivational feeding (11). The VTA is connected mostly to 
the lateral hypothalamus (H), which processes signals from 
various peripheral organs linked to reward signaling and 
modulation of food intake and energy consumption to 
maintain basal metabolic functions.

FIGURE 3. Effects of glucagon-like peptide 1 (GLP-1) 
receptor agonist medications. GLP-1 receptor agonists 
(GLP-1RA) interact with GLP-1 receptors (GLP-1R), which 
activate G proteins (Gα, Gβ, and Gγ, respectively) and are 
inhibited by β-arrestin (βarr) (A). Postulated effects of GLP-1 
receptor agonist therapies mediated by the brain include 
improvements and reductions in particular processes (B). The 
systemic effects of this activity can help reestablish overall 
homeostasis. 

All images were created with Canva, VH Dissector, and 
BioRender.com, for which the Mid-Atlantic (VISN 6) MIRECC 
holds renewable registrations.
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G 
lucagon-like peptide 1 (GLP-1) is an incretin, a gut- 
derived hormone released from enteroendocrine 
L-cells (distributed along the entire gastrointes
tinal tract) after food intake, leading to the 

secretion of insulin from pancreatic beta cells in a nutrient- 
dependent manner (12). GLP-1 is also secreted from alpha 
cells in the pancreas and multiple regions in the central 
nervous system. There are two bioactive forms of this 
peptide hormone in the bloodstream: GLP-1-(7–36)-NH2, 
the more abundant form (approximately 80%), and GLP- 
1-(7–37), the less abundant form (approximately 20%). 
GLP-1 has a relatively short half-life of approximately 
2–5 minutes once released into plasma. This is a result of 
(in part) the action of the enzyme dipeptidyl-peptidase- 
4 and GLP-1’s low molecular weight, which accelerates 
renal clearance (5, 13).

Both GLP-1-(7–36)-NH2 and GLP-1-(7–37) interact with 
a specific GLP-1 receptor, a class B G protein–coupled re
ceptor (2). GLP-1 receptors are widely expressed through
out multiple human tissues (e.g., muscles, bones, and adipose) 
and organs (e.g., gastrointestinal tract, pancreas, kidneys, 
lungs, heart, blood vessels, and brain) (14, 15). GLP-1 re
ceptors mediate the physiological actions of GLP-1, which 
include the regulation of glucose homeostasis (decreasing 
glucose secretion), appetite control (i.e., cravings and sa
tiety), body weight management, metabolism, glycogen syn
thesis in skeletal muscle and liver, gastric peristalsis, lipid 
metabolism and modulation of fat absorption, and cardio
vascular and neurologic function, among others (2–5).

The extensive anatomical distribution and range of phys
iological roles of GLP-1 suggest its important pharmacother
apeutic potential. GLP-1 receptor agonist therapies have been 
used mainly to treat type 2 diabetes mellitus and obesity (3). 
More recently, new medications (e.g., semaglutide) have be
come popular because of their efficacy in reducing body 
weight in obese patients with and without diabetes (16, 17). 
At present, there are seven GLP-1 receptor agonists ap
proved as medications for type 2 diabetes, cardiovascular 
disease, and obesity: albiglutide, dulaglutide, exenatide, 
extended-release exenatide, liraglutide, lixisenatide, and 
semaglutide (18). The Food and Drug Administration (FDA) 
approved the first GLP-1 receptor agonist medication, exe
natide, in 2005. Semaglutide was the most recent, receiving 
FDA approval in 2019. Most of these medications are in
jected subcutaneously, but semaglutide can also be admin
istered orally (typically once daily) (18). Dulaglutide is 
indicated for hemoglobin A1C management in patients at 
high risk of cardiovascular disease events. Liraglutide (at 
a high dose) was approved for obesity management in 
patients over 12 years old with a body mass index above 30. 
In 2021, the FDA approved high-dose semaglutide injec
tions for chronic weight management (18). At present, GLP- 
1 receptor agonist pharmacotherapies are being evaluated 
for other clinical uses (3). For example, they are promising 
neuroprotective agents, preventing neuroinflammation and 
supporting cognitive improvement (19–21).

GLP-1 IN THE BRAIN

GLP-1 and its analogs can readily cross the blood-brain 
barrier (BBB), where its neuroactive properties can benefit 
nervous tissue (22). This neuropeptide is also synthesized 
in some brain regions, including hypothalamic nuclei, the 
nucleus tractus solitarius, and the caudal brainstem (23). 
GLP-1 receptors are expressed in the caudate, putamen, 
globus pallidum, hypothalamus, amygdala, hippocampus, 
cerebellum, and spinal cord (Figure 1) (1). GLP-1 has im
portant neurophysiological attributes, mediating neuronal 
processes such as mitochondrial function, protein aggre
gation, and synaptic plasticity (9, 14, 22). In recent years, 
studies have described a central role for GLP-1 in regulating 
food intake, providing neuroprotection, decreasing neuro
inflammation, amplifying signal transduction, and po
tentiating cognitive function by counteracting learning 
dysregulation (3, 5, 24).

GLP-1’s ability to regulate food intake and appetite was 
originally linked to the midbrain (hypothalamic nuclei) and 
hindbrain (the nucleus tractus solitarius) (5). However, 
animal studies revealed that GLP-1 receptors are also 
expressed in mesolimbic regions of the brain such as the 
ventral tegmental area and nucleus accumbens, where it 
mediates (in part) the neural mechanisms of reward and 
motivation associated with food intake (Figure 2) (6–9). In 
rodents, the GLP-1 receptor agonist exendin-4 induced an
orexia and attenuated alcohol-mediated behaviors through 
activity in the mesolimbic reward system (7, 25–27). Inter
actions between GLP-1 and alcohol appear to involve a 
comprehensive neural circuit, encompassing limbic reward 
and motivation areas and hindbrain structures (27). In the 
hindbrain, GLP-1 is synthesized in the neurons of the nu
cleus tractus solitarius, which project to the reward centers 
of the brain (6). GLP-1 is a multifaceted neuropeptide that 
can modulate important behavioral and neurochemical 
physiological responses linked to alcohol use and the use of 
other drugs, such as nicotine, opioids, cocaine, and amphet
amines (28). GLP-1 analogs have the potential to help treat 
addictions by inhibiting dopamine release in the reward 
centers, consequently reducing withdrawal effects and re
lapses (29). Taken together, evidence from preclinical and 
clinical studies suggests that the administration of GLP-1 
analogs could become a future therapeutic approach to treat 
substance use disorders (27, 28).

The dopaminergic pathways of the amygdala (among other 
limbic structures) mediate responses in the reward circuit of 
the mesolimbic system (30). In the amygdala, dopamine sig
naling is increased during food ingestion, and GLP-1 is in
volved in the regulation of feeding behavior (31). Animal 
studies have shown robust expression of GLP-1 receptors 
in the central portion and the capsular and lateral regions 
of the amygdala (11, 32). In rodents, GLP-1 receptors appear 
to have an important function in feeding motivation, but 
whether these receptors are expressed in the human 
amygdala remains unclear (11).
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The central amygdala is a complex neuroanatomical re
gion, with a mixed population of orexigenic and anorexigenic 
cell bodies (11). It receives projections from the nucleus 
tractus solitarius (11, 33). Thus, the activity of GLP-1 receptor 
agonist medications in the central amygdala are speculated to 
mediate (in part) the anorexigenic effects of these com
pounds. In addition, these medications may regulate mech
anisms linked to emotional and motivational feeding (11).

Anatomically and physiologically, astrocytes are among the 
most important components of the BBB. Astrocytes are central 
regulators of glucose metabolic processes in the brain (34), and 
they play a key role in responses to acute ischemic stroke, 
altering the molecular structure of the BBB and secreting 
inflammatory chemicals (35). GLP-1 receptors are also 
expressed in hypothalamic astrocytes (34). Exedin-4 
protects the BBB in acute ischemic stroke by decreasing in
flammatory responses (36). Recent clinical studies suggest 
that GLP-1 receptor agonist therapies can reduce the effects 
of stroke among individuals with type 2 diabetes (37–39).

Neurodegenerative conditions such as Alzheimer’s dis
ease and Parkinson’s disease have been linked to type 2 dia
betes and insulin dysregulation in the central and peripheral 
nervous systems (40, 41). Brain insulin resistance can occur 
without peripheral insulin resistance, and both have been 
linked to cognitive decline (42, 43). Furthermore, GLP-1 in
creases insulin signaling in the brain (44). GLP-1 receptor 
expression in the brain supports hippocampal synaptic 
transmission and regulates cellular apoptosis, potentiat
ing the regulation of neurological and cognitive functions 
(1, 14, 45). GLP-1 receptor deficiency has been linked to a 
higher risk of seizures and neurodegenerative processes, 
whereas its overexpression promotes neuroprotection and 
improved cognition (20, 46). GLP-1 receptor agonist com
pounds have shown relevant neurostimulatory and neuro
protective activity in animal and human trials. Some studies 
have indicated that their pleiotropic properties appear to 
ameliorate aging-related neurodegenerative diseases, particu
larly Alzheimer’s disease and Parkinson’s disease (20, 44, 47, 48).

Many individuals living with severe mental illness (e.g., 
schizophrenia spectrum disorders, bipolar disorder, and 
major depressive disorder) rely on antipsychotic medica
tions (49). However, these therapies provide only limited 
symptomatic relief from a subset of symptoms and can 
cause side effects, with some medications increasing the 
risks of type 2 diabetes, metabolic syndrome, obesity, and 
cardiovascular diseases (10, 50). In addition, antipsychotics 
do not target cognitive impairments, which typically ac
company some mental illnesses (21, 51, 52).

GLP-1 is a powerful brain-signaling molecule with po
tential as a neuropsychiatric pharmacotherapy (21, 53). 
GLP-1 exerts neurostimulatory and neuromodulatory ef
fects, regulating the release of several neurotransmitters, 
such as serotonin, dopamine, gamma-aminobutyric acid, 
and glutamate, which mediate (in part) important neu
rophysiological mechanisms linked to depression-related 
behaviors and those associated with other psychiatric 

disorders (54). Results from preliminary studies in animals 
have indicated that GLP-1 receptor agonists can mediate 
microglial activity, prevent neuroinflammation, and help im
prove anxiety-related emotional behaviors (55, 56).

Given the evidence thus far, administration of GLP-1 
receptor agonists appears to support cognitive function and 
may improve mood symptoms among individuals with anxiety 
and depression (20, 44, 47, 48, 53–56). The proven systemic 
benefits of GLP receptor agonists can help reestablish overall 
homeostasis by balancing glycemic control, improving 
metabolism, and supporting healthy body weight (3–5, 21). 
Furthermore, GLP-1 receptor agonist therapies may help 
reverse or alleviate the metabolic side effects of antipsy
chotic medications (Figure 3) (21, 53).

CONCLUSION

GLP-1 is a potent pleiotropic substance, mediating a wide 
range of organism-level homeostatic mechanisms. GLP-1 
receptor agonists are innovative medications with multiple 
pharmacological actions that influence systemic conditions 
such as type 2 diabetes, obesity, and cardiovascular disease. 
The evidence suggests that use of GLP-1 receptor agonist 
pharmacotherapies may be expanded to treat cerebral vas
cular accidents, Alzheimer’s disease, and Parkinson’s dis
ease, as well as neuropsychiatric disorders, including 
anxiety, depression, and substance use disorders. However, 
more clinical trials are needed to address important factors, 
such as optimal dosing, gender differences, routes of ad
ministration, and undesirable side effects.
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