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Rehabilitation of cognitive and psychosocial deficits result-
ing from traumatic brain injury (TBI) continues to be an area
of concern in health care. Commonly co-occurring psy-
chiatric disorders, such as major depressive disorder and
posttraumatic stress disorder, create additional hurdles
when attempting to remediate cognitive sequelae. There is
increased need for procedures that will yield consistent
gains indicative of recovery of function. Intermittent theta-
burst stimulation (iTBS), a form of repetitive transcranial
magnetic stimulation, has potential as an instrument that can
be tailored to aid cognitive processes and support functional
gains. The use of iTBS enables direct stimulation of desired

neural systems. iTBS, performed in conjunction with be-
havioral interventions (e.g., cognitive rehabilitation, psy-
chotherapy), may result in additive success in facilitating
cognitive restoration and adaptation. The purpose of this
theoretical review is to illustrate how the technical and
physiological aspects of iTBS may enhance other forms of
neurorehabilitation for individuals with TBI. Future research
on combinatorial iTBS interventions has the potential to
translate to other complex neuropsychiatric conditions.
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Traumatic brain injuries (TBIs) can result in alterations in
neurocognitive performance that negatively influence ability
to complete instrumental activities of daily living (IADLs).
Worldwide, 69 million people are estimated to sustain a TBI
each year (1). Although 70%–90% of TBIs are mild (i.e.,
mTBI; concussions) with the cognitive consequences of in-
jury typically resolving within 90 days (2, 3), a significant
number of individuals with injuries across all levels of TBI
severity continue to have persisting deficits that can reduce
quality of life (1, 4, 5). Major depressive disorder (MDD) and
posttraumatic stress disorder (PTSD) are two psychiatric
disorders that commonly co-occur with TBI (6, 7). It is es-
timated that up to 53% of patients hospitalized after TBI also
haveMDD (6), and that 16.5% of individuals sustaining a TBI
also have co-occurring PTSD (8). Impaired cognition is a
frequently observed sequela of both MDD (9) and PTSD (10,
11). Coupled with a TBI, these psychiatric presentations may
further exacerbate alterations to cognitive functioning. Re-
habilitative programs and strategies intended to remediate
cognitive processes such as executive-attentional functions,
memory, and language show promise, but reported gains
frequently fall short of restoring an individual’s baseline
level of functional performance (12–16). As a result, many
individuals continue to remain dependent on supportive

devices, strategies, and accommodations when performing
IADLs.

Transcranial magnetic stimulation (TMS) is a noninva-
sive method of neuromodulation. It has received Food and
Drug Administration (FDA) approval for treating a number of
disorders, including depression (17), obsessive-compulsive
disorder (OCD) (18), and smoking addiction (19), and shows
promise as a means of treating the cognitive and psychosocial
effects of TBI (20–23). The purpose of this theoretical review
is to provide evidence for the empirical basis for pairing TMS
with behaviorally based interventions, such as cognitive re-
habilitation (CR) exercises. The potential clinical benefits of
this pairing will be discussed as they pertain to the rehabili-
tation of individuals with closed-head TBI, with and without
co-occurring MDD and/or PTSD. The empirical framework
detailed in this review consists of four key elements: identi-
fying the population, establishing a potentiated neural envi-
ronment usingTMSandmodulating neural responses, pairing
TMS neurostimulation with behaviorally and cognitively
based interventions (e.g., CR, psychotherapy) that target
processes supported by the engaged neural targets, and en-
hancing transfer of treatment-related gains to performance of
IADLs. In explicating this framework, the basic principles of
TMS neuromodulation, specifically repetitive TMS (rTMS)
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and intermittent theta-burst stimulation (iTBS, a specific type
of rTMS), andCRare examinedwith the goal of advancing the
field of neurorehabilitation (Figure 1). For individuals with
TBI and co-occurring mental health conditions, this review
illustrates how the technical and physiological aspects of
iTBS can be leveraged to enhance therapeutic effects of
neurorehabilitation.

ELEMENT 1: POPULATION OF INTEREST

Closed-head TBIs (nonpenetrating head injuries) can pro-
duce widespread neural damage; even those that are deemed
mild may trigger metabolic dysfunction that alters neural
processing (24–26) (Figure 2). Structural damage to neural
networks is common, with TBI pathology capable of dis-
rupting basic underlying cognitive function (25, 26). Be-
haviorally, deficits commonly manifest in the form of

hampered executive-attentional functions and impaired
memory (27, 28).

In many instances, TBIs are the onset of a cascade of
medical events and are commonly accompanied by
co-occurring MDD as well as PTSD. MDD symptoms may
result from a combination of functional changes, the psy-
chological toll that results from the TBI, and the immediate
aftermath of the injury, as well as other related changes (e.g.,
increased pain, sleep changes); PTSD may result from the
event in which the TBI occurred. When addressing a TBI,
one must be cognizant that structural, functional, and met-
abolic changes may have occurred (29–38). Mechanistically,
there can be substantial overlap between MDD and TBI in
terms of neural disruption (6, 7), with both linked with an
inflammatory response within the brain that negatively in-
fluences neural pathways, neurotransmitter release, growth
factors, and neurogenesis (39–42). Glutamate and GABA are

FIGURE 1. The model depicts a theoretical framework for the paired use of rTMS/iTBS with behavioral interventions targeting cognitive
and psychosocial rehabilitationa
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a Cognitive interventions should be performed directly after stimulation to take advantage of the potentiated neural environment. Neural networks
likely to be influenced by stimulation of the dorsolateral prefrontal cortex (DLPFC) include the default mode network, dorsal anterior network,
salience network, and central executive network, also referred to as frontal central parietal network. Stimulation of the lateral parietal cortex (LPC) is
likely to influence the hippocampal network. The model includes several examples of psychotherapies with strong empirical support, including, but
not limited to cognitive-behavioral therapy (CBT), acceptance and commitment therapy (ACT), behavioral activation (BA), prolonged exposure (PE),
and cognitive processing therapy (CPT). This list is not all-encompassing; it merely provides several common examples. rTMS, repetitive transcranial
magnetic stimulation; iTBS, intermittent theta-burst stimulation. The brain image depicted is adapted from “Human Anatomy,” by BioRender.com
(2020). Retrieved from https://app.biorender.com/biorender-templates.
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two of the neurotransmitters directly altered after a TBI (43)
linked with MDD (44). Additionally, there are also higher levels
of CSF cytokines (an acute inflammatory response) following
moderate to severe TBI, which can be predictive of posttrau-
matic depression (45). Relatedly, there is evidence that markers
of neural inflammation may also be present with PTSD (46). Up
to 50% of individuals with PTSD may also present with MDD,
strongly linking these two disorders (47). Collectively, these
findings provide a strong theoretical rationale for why the two
co-occur at such high rates. rTMS has the potential to modulate
neuroinflammation (35) and increase production of neuro-
transmitters such as glutamate (48) (Table 1).

ELEMENT 2: CREATING A POTENTIATED NEURAL
ENVIRONMENT

Given the strong overlap between TBI,MDD, and PTSD, it is
important to investigate how treatments that have shown
varying levels of success alleviating symptoms of one disor-
der (in this case MDD) may influence remediation of the
sequelae more commonly linked with the others. rTMS is
a neuromodulatory treatment approved for treatment-
resistant MDD (17) that is a strong candidate as a potential
medical intervention for other neurological impairments
characterized by aberrant physiological and chemical
functioning that disrupts neurological homeostasis (e.g.,
cognitive impairments secondary to TBI). rTMS delivers
repeated trains of relatively focal stimulation provided via
external magnetic coils, which create an electrical field
that induces a current within the brain that triggers inhibitory

or excitatory neural responses (49–51). The area of concern or
presenting deficit is likely to guide the course of treatment
(e.g., inhibitory stimulation to reduce aversive behaviors). The
stimulation provided will be either more rapid (i.e., supra-
threshold) or slower (i.e., subthreshold) than what is typically
occurring physiologically, thereby inducing faster or slower
neuronal depolarization and ultimately suppressing or facili-
tating neuronal excitability. The induced neural responses
may facilitate an environment that is more responsive to
modification, potentially enabling recovery of functions di-
minished by disease or injury and reducing aversive behav-
iors. Therefore, the corresponding stimulation is delivered in
a manner consistent with the presenting deficit (e.g., inhibi-
tory stimulation to reduce aversive behaviors).

Site of Stimulation
rTMS can lead to shifts in a number of physiological pro-
cesses that may benefit cognitive function. A major area of
concern in using rTMS is ensuring that stimulation is oc-
curring in a location likely to induce positive changes. It is still
a relatively novel treatment, and efficacy studies are actively
attempting to determine which sites of stimulation are ap-
propriate for a given condition. The dorsolateral prefrontal
cortex (DLPFC) is a common target because it is a gateway to
many high-level aspects of cognitive functioning with top-
down connections to multiple neural systems of interest
(Figure 1). Stimulation of the DLPFC is associated with al-
terations in regional cerebral blood flow (CBF) in a number of
regions, including the prefrontal cortex, posterior cingu-
late, thalamus, hippocampus, and parahippocampus (29–31).

FIGURE 2. A traumatic brain injury synopsis
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These regions are pertinent for high-level cognitive func-
tions; increased CBF has been observed to coincide with
improved cognition as evaluated by assessments of memory
and executive-attentional functioning (52). However, it must
be noted that shifts in CBFmay not necessarily be associated
with cognitive improvement. Additionally, rTMS may also
influence neurotransmitter release. Cho and Strafella
(33) observed that 10 Hz of rTMS delivered to the left
DLPFC induced ipsilateral dopamine release, which is
particularly important considering that dopamine can
influence multiple aspects of cognition (e.g., attention
and motivation) (33, 53). Higher functional connectivity
between the left DLPFC and striatum is linked with in-
creased responsiveness to treatment among individuals
with MDD (54).

Even with improvements in stimulation, precise targeting
of specific regions and networks is an area that remains
under investigation. Sack et al. (55) examined four com-
monly deployed TMS placement methodologies using a size
congruity effect paradigm with stimulation delivered to the
right parietal sulcus. They observed that use of individual
fMRI-guided TMS neuronavigation produced a stronger
behavioral effect relative to individual MRI-guided TMS
neuronavigation, TMS guided by group functional Talairach
coordinates, and TMS placement determined by 10–20 EEG
position P4. Recent work by Herrold et al. (56) suggests that
using multimodal imaging consisting of structural, func-
tional, and diffuse MRI coupled with TMS-induced electric
fields has the potential to benefit the recovery of individuals
with TBI who have comorbid conditions. To further en-
hance treatment for depression, Luber et al. (57) proposed
that fMRI-guided neuronavigation needs to be paired with
activation of specific networks based on regions of dys-
function. They proposed priming systems supporting goal
pursuit, specifically the promotion (MDD) and prevention
systems (generalized anxiety disorder [GAD]). They con-
tended that doing so could reveal individual differences
enabling direct targeting of locations in the left (MDD) and
right PFC (GAD). Participation in fMRI tasks likely to be

impaired as a result of TBI may support identification of
regions most likely to benefit from stimulation, allowing
further individualization and enhancement of treatment.

In clinical practice for treatment-resistant depression,
rTMS is commonly delivered at 10 Hz with an intensity of
120% of motor threshold for 3,000 pulses provided over the
course of 5 days per week for 4–6 weeks (17, 58). An ex-
amination of two commonly implemented FDA-approved
protocols for treatment-resistant MDD revealed that an H1-
coil paired with pharmacological therapy was superior to a
figure-8 coil paired with pharmacological therapy (59). It is
important to note that both protocols were safely tolerated
and efficacious relative to pharmacotherapy alone (59).
Developments in the field have continued, with new tech-
niques increasing treatment efficiency. For efficacy and
safety reasons, initial studies targeted isolated areas. Asmore
information is uncovered, treatment may commence by
targeting the DLPFC with standard treatment protocols.
Treatment may then progress to targeting additional sites
with treatment protocols tailored to match the need to en-
gage or inhibit neural functions as determined by neuro-
imaging findings and individual behavioral profiles.

Theta-Burst Stimulation
TBS is a form of rTMS that consists of pulses delivered at a
much faster rate than used in standard rTMS. TBS has two
dominant subcategories based on pattern of stimulation (in-
termittent and continuous). During iTBS, patterned pulses
(theta bursts) are delivered at a high frequency, with inter-
mittent pauses occurring between pulse sets (60, 61) (e.g., 100-
ms paired pulses separated by 100-ms interpulse intervals).
Use of iTBS increases neural excitability (61, 62). Alterna-
tively, in continuous TBS (cTBS), pulses are deliveredwithout
pauses, which commonly reduces excitability (62).

Collectively, the potentiated neural environment created
by both rTMS and cTBS theoretically may be more adapt-
able to change and can produce enduring effects, in that
high- and low-frequency stimulation are thought to induce
long-term potentiation (LTP) or long-term depression

TABLE 1. Neural alterations associated with traumatic brain injury (TBI)a

Common neural alterations due to TBI TMS-induced response Areas of note

Altered cerebral blood flow (29–31) Altered cerebral blood flow in healthy
individuals and persons with depression

Prefrontal cortex, posterior cingulate, thalamus,
hippocampus, and parahippocampus

Cerebral edema (32) Reduced cerebral edema (rodent models) Cerebral hemispheres
Disruption of neurotransmitter
regulation (33)

Modulation of dopamine Ipsilateral anterior cingulate cortex and
orbitofrontal cortex

Regional and diffuse metabolic
dysfunction (34, 35)

Increased expression of brain-derived
neurotrophic factor (rodent models)

Dopamine, glutamate, and brain-derived
neurotrophic factor

Reduced cortical excitation (36, 37) Increased cortical excitation for individuals
with TBI

Cortex

Functional connectivity (38) Altered functional connectivity reducing
symptoms for individuals with TBI

Dorsolateral prefrontal cortex, default mode
network, and subgenual anterior cingulate
cortex

Neuroinflammation (35) Reduction in neuroinflammation through
modulation of cytokine levels (rodent
model)

Prefrontal cortex and spinal cord tissue
homogenates

a TMS, transcranial magnetic stimulation.
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(LTD) mechanisms. These are the neurobiological processes
that enable persisting functional neuronal changes after
cessation of stimulation (63–65). Specifically, LTP is an ac-
tivity- or stimulus-driven increase in synaptic strength that
is frequently discussed in relation to memory and learning,
whereas LTD is a related phenomenon involving a reduction
in synaptic strength (66, 67).

The particular use of theta waves in neurostimulation re-
search is, in part, a product of hippocampal research. Entorhinal
inputs producing theta waves have been shown to modulate
neurons and synaptic weights influencing memory (68).
iTBS can induce cortical potentiation lasting up to
60 minutes after treatment cessation (69). The prolonged
period provides additional opportunities for the stimulated
pyramidal neurons and interneurons to undergo depolar-
ization and subsequently increase in synaptic strength to
engage the LTP-like mechanisms that are important to
memory and learning (62, 70). Induction of LTP may be
particularly beneficial clinically because these mechanisms
are commonly impaired after a TBI.

Although both traditional rTMS and iTBS are effective at
inducing LTP and LTD, the iTBS pattern enables a shorter
administration time (approximately 3–6 minutes as opposed to
30–38 minutes for traditional rTMS), allowing for more
pulses to be delivered daily and reducing the number of
treatment sessions needed (60, 71, 72). Findings from work
comparing iTBS to traditional rTMS protocols with regard
to treating MDD indicate that the two methods yield sim-
ilar positive outcomes (60, 73), with iTBS notably more
efficient and cost effective (71). With respect to safety, re-
searchers have noted that iTBS produces similar side ef-
fects in comparison to traditional rTMS (e.g., nausea,
fatigue, insomnia); the most common side effect reported is
headache (73). Furthermore, a review of TMS use, includ-
ing use with special populations, noted the risk of seizure
related to TMS use was less than 1% (74).

ELEMENTS 3 AND 4: PAIRING rTMS/iTBS WITH
BEHAVIORALLY AND COGNITIVELY BASED
INTERVENTIONS

As noted, use of rTMS and iTBS creates a neural environ-
ment that is potentially malleable and primed for recovery,
which may prove beneficial to processes impaired following
neurological trauma. After cessation of iTBS to the DLPFC,
enhanced neuroplasticity is thought to last for at least 60 min-
utes, during which time behaviorally and cognitively based
inventions such as CR and psychotherapy can be provided.
This window of time provides an opportunity to target specific
cognitive processes with the goal of triggering engagement
of activity-dependent neural mechanisms of synaptic
change (i.e., metaplasticity). These mechanisms are im-
portant because they serve as adaptive neural processes
and are likely to aid recovery of impaired cognitive func-
tions, particularly when paired with behavioral interven-
tions targeting specific areas of cognition.

Why Not Just Neuromodulation in Isolation?
Research directly examining the influence of rTMS and iTBS
on the cognition of individuals with a history of TBI is lim-
ited, and findings are mixed. Treatment studies of individ-
uals with a history of severe TBIwho present with a disorder
of consciousness reveal that use of rTMS is associated with
varying levels of success, including neurobehavioral gains
such as a positive shift in cognitive state (i.e., cognitive re-
sponses consistent with movement toward conscious en-
gagement) (20, 21). Studies examining stimulation of the
motor cortex report no substantial gains in cognitive func-
tion (75–77), underscoring the importance of the site of
stimulation. Studies of less severe TBI populations have also
producedmixed results. Both Lee and Kim (22) andHoy and
colleagues (23) observed improvement in areas of executive
functioning, whereas research by Neville and colleagues (78)
and Koski and colleagues (79) both observed minimal to no
changes with respect to cognitive performance. It should be
noted that Hoy and colleagues (23) did not find a significant
benefit with respect to alleviating symptoms of depression
relative to a placebo treatment, which was the primary aim
of the study. The variability observed with respect to gains
following rTMS may be related to the precision of neural
targeting with stimulation of the target site pertinent for
enhancing cognitive processes (56, 80).

In assessing the potential effectiveness of a treatment
targeting cognitive processes, it is also important to consider
that many of the processes and skills impaired after a TBI
require routine use in order to maintain proficiency. Reha-
bilitation of damaged neural circuits entails repeated en-
gagement of those circuits in amanner that is potent and that
enables transfer from the target behavior to related behav-
iors (81). Neurostimulation can create an ideal environment
to promote plastic changes, but active engagement is likely
necessary to facilitate and sustain desired changes. Pink and
colleagues (82) performed a scoping review examining
30 studies of rTMS and TBI. They noted that the treatment
generally had minimal adverse effects and was associated
with the reduction of both physiological and psychosocial
sequelae of injury. Remediation of cognitive deficits was,
however, more variable with a limited number of studies
examining cognitive response to treatment. Nonetheless,
pairing rTMS/iTBS with cognitive interventions may in-
crease the clinical benefits of these interventions because it
enables direct targeting of hampered processes in a neural
environment made more responsive to change by rTMS/
iTBS stimulation.

Cognitive Rehabilitation
CR is a multifaceted process intended to aid patients with
successful engagement and completion of functional tasks by
identifying, training, and implementing the use of accom-
modations to compensate for deficits in cognition resulting
from injury or disease, while at times also targeting recovery
of deficient cognitive processes. CR consists, in part, of
participant education and skills training intended to aid
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recovery of function by remediating persisting cognitive and
functional deficits (83). Given the impact of mental health
symptoms on cognitive functioning, as well as the high comor-
bidity of mood symptoms and cognitive concerns post-TBI,
many CR programs also integrate a mindfulness, stress man-
agement, or affective arousal regulation component. Some CR
programs have even combined more formal, manualized em-
pirically validated mental health treatments (e.g., cognitive
processing therapy for PTSD) with traditional treatments that
have demonstrated significant improvements in cognitive and
functional outcomes (SmartCPT) (84, 85). Programs may also
integratemotivational interviewing and structured goal setting.

Individuals participating in CR for TBI engage in com-
pensatory strategy training (e.g., learning to use both inter-
nal and external memory aids, attentional or executive
functioning strategies, and other tools to accommodate and
compensate for deficits) with the intent of improving both
cognitive and functional well-being. Individuals receive
training in how to properly use accommodations and in-
corporate these strategies into their IADLs (e.g., managing
medications and finances, cooking) with a goal of routine use
enabling greater functional independence (Figure 3).

Additionally, metacognitive skills training (e.g., targeting
deficit awareness and functionally connecting how impair-
ments may influence participation in IADLs) may also be a
component of CR. A goal of this intervention is to enable in-
dividuals to identify barriers and navigate them by using
knowledge they already have and accommodations and skills
that may be developed during CR. Early systematic reviews of
metacognitive interventions and treatment of cognitive im-
pairments secondary to TBI have reported positivefindings but
noted that the number of studies available for analysis was
limited (14). A recent meta-analysis of acquired brain injury
(e.g., stroke, TBI) observed that metacognitive intervention is
associated with better functional outcomes, but methodologies
for using the treatment vary, highlighting the need for more
research (86). One of the perceived benefits of metacognitive
skills training is that it can be incorporated into a variety of
treatment plans, which likely influences the success of the
intervention.

CR programs may expand outside accommodations and
include restorative exercises (e.g., attention training, spaced-
memory exercises) or cognitive training exercises that are
intended to directly enhance cognitive ability. An additional
aim of restorative interventions is to aid recovery by in-
ducing plastic changes within the brain. Similar to use of
rTMS, CR is associated with changes in neural activation
and structural connectivity influencing multiple neural
networks (e.g., central executive network [CEN], default
mode network [DMN], dorsal anterior network [DAN]), al-
though there is a wide range of individual variability with
respect to response to treatment (87–90). Additionally,
empirical support on the ability to translate skills from
these training activities to daily life is mixed (12, 13, 91).
There are, however, sufficient positive findings providing
efficacy for further research with current work, suggesting

that TMS may bolster or strengthen the ability of restor-
ative exercises to prompt functional changes in various
cognitive domains.

Attention process training. Attention is an area frequently
targeted during cognitive intervention because it is com-
monly impaired after a TBI. Remediation of attentional
deficits is a major challenge for clinicians and a key area of
concern, particularly with respect to the safety of the patient
and the patient’s family during IADLs (e.g., ensuring basic
and sustained attention to task while cooking, ironing, or
taking medication). Attention process training (APT) is a
hierarchical training protocol intended to improve several
types of attention (e.g., sustained, divided, alternating) with
use of exercises that engage executive-attentional skills, in-
cluding working memory and metacognitive skills (92–94).
Several studies examined the effectiveness of earlier ver-
sions of APT (current version is APT-3, a computerized
version of the treatment); results showed gains in individuals
with a history of mild (95) and severe TBI (96), as well as in
individuals who had a general history of TBI with persisting
symptoms (97). Furthermore, a study assessing APT effec-
tiveness in acquired brain injury (e.g., stroke and TBI) re-
ported that early intervention was beneficial for participants in
both groups, with improvements maintained at the 6-month
follow-up (98). Collectively, these studies lend support for us-
ing APT at all stages of TBI recovery.

FIGURE 3. Cognitive rehabilitation treatmentsa
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a Several examples of compensatory and restorative treatments that
may be used during cognitive rehabilitation are provided to clarify how
treatments differ. This list is not exhaustive. Compensatory strategy
training is most commonly used during cognitive rehabilitation be-
cause restorative treatments have not been consistently proven to
facilitate return to baseline.
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Attention training paired with rTMS/iTBS. Studies of rTMS/
iTBS and attention are still in their infancy, although there is
burgeoning evidence that rTMS delivered to the DLPFC can
enhance the executive-attentional processing of individuals
with a history of TBI (22, 23). Studying healthy individuals by
using a unique site of stimulation, Esterman et al. (99) re-
ported that transient attention improves after iTBS deliv-
ered to either themidline cerebellar node of the DAN or the
right cerebellar node of the DMN. However, sustained at-
tention was improved only after stimulation of the DAN.
Treatment approaches likely to yield the largest gain for
attention are those that enable physiological change, while
engaging skill sets that are pertinent to everyday tasks. Pairing
rTMS/iTBS to DLPFC or nodes of the DAN and DMN with
behavioral interventions such as APT may augment remedi-
ation of attentional deficits. Further research is needed in this
area to aid understanding of these findings.

Memory training. Deficits to explicit memory, particularly
recall of facts and events (semantic and episodic memory)
and acquisition of new information (encoding of episodic
and semantic information), are common after a TBI. A
common behavioral treatment for memory deficits is spaced
retrieval (also termed the “spacing effect”). It consists of the
presentation of or request for target information, with the
target response produced repeatedly over increasingly
longer time intervals. Spaced retrieval with persons with a
history of TBI has produced positive outcomes, indicating
that the technique can enhance memory and learning
(100–102).

Memory training paired with rTMS/iTBS. Examining TMS
as a means of enhancing memory is also still in the earlier
stages of development with studies just beginning to uncover
the potential influence of rTMS on memory processes. Un-
like much of the previous research discussed, site of stimu-
lation for memory thus far has focused on the lateral parietal
cortex (LPC), which is a component of the cortical hippo-
campal network. Wang et al. (103) examined whether
5 consecutive days of rTMS delivered to the LPC could en-
hance associative memory (a subtype of episodic memory) in
healthy individuals. Relative to sham stimulation, rTMS
improved memory tested 24 hours after the session. rTMS
was also associated with positive changes in neural con-
nectivity in the cortical hippocampal network, results that
have now been replicated (104).

These findings suggest that iTBS may be used to
strengthen the neural network and directly aid memory.
Pairing memory strategies (such as spaced retrieval) with
iTBS has the potential to strengthen neural circuits and
produce lasting functional changes that would greatly
benefit persons with residual symptoms from TBI. In the
same manner that site of stimulation is key, use of ecolog-
ically valid cognitive assessments is critical to ensure that
gains endure and are not limited to clinical or laboratory
settings.

Paired Treatment of MDD
In treatment of co-occurring MDD with TBI, best practice
aims to address the depressive symptomatology independent
of etiology (e.g., as potentially related to history of TBI),
using the same empirically validated psychosocial and be-
havioral interventions (e.g., cognitive-behavioral therapy,
behavioral activation, acceptance and commitment therapy).

rTMS is currently most commonly recommended for use
with treatment-resistant MDD (i.e., the treatment to use
when other options fail to yield clinically significant gains)
(105, 106). Paired TMS treatment and psychotherapy have
an observed response rate of 66% and a remission rate of
56% (107). Work examining the use of rTMS as a treatment
for MDD with comorbid TBI is limited but growing. Case
studies have provided initial evidence that rTMS may fa-
cilitate a decrease in depressive symptoms for individuals
with a history of mild TBI (108) or severe TBI (109). How-
ever, these findings may not be consistent across individuals.
A randomized control trial (RCT) by Rao et al. (110) revealed
a small effect of treatment for individuals with TBI with
highly variable responses to treatment between participants.
The authors noted that parameters of stimulation may in-
fluence treatment outcomes; their study used low-frequency
stimulation to the right DLPFC. Additionally, they also
remarked that time postinjury may have been a confounding
variable influencing their outcomes. Finally, an RCT by
Siddiqi et al. (38) found stimulation delivered to left DLPFC
resulted in clinical gains that were beyond what was ob-
served with sham stimulation.

There have been only a few RCTs that have examined
how rTMS has influenced cognitive and psychosocial defi-
cits after a TBI. Lee and Kim (22) examined rTMS and de-
pression. They noted that treatment reduced depressive
symptoms and improved cognitive functioning in specific
aspects of executive functioning for the treatment group.
Gains were not observed for participants in a control group.
Hoy et al. (23) reported similar findings with the active
treatment group displaying improved performance in as-
pects of cognitive functioning (i.e., executive functioning,
working memory). As mentioned previously, participants in
this study displayed improvement with respect to depressive
symptoms, regardless of the treatment received (active or
sham).

Paired Treatment of PTSD
In treating PTSD co-occurring with residual symptoms from
TBI, it is pertinent to address emotional responses to
stressors, while also targeting cognitive impairment. Psycho-
logical treatment of PTSD takes many forms including, but not
limited to, empirically based treatments such as prolonged
exposure (PE) (111) and cognitive processing therapy (CPT)
(112).

PE involves, in part, presenting aversive stimuli to a
person in a controlled safe environment and teaching skills
to manage anxiety and stress. Over time, the implementation
of these skills during repeated or prolonged exposure
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reduces the anxiety response altogether, thus decreasing the
negative impact of anxiety on IADLs. Fryml and colleagues
(113) performed a randomized, double-blind, active sham-
control pilot study examining the influence of the paired use
of rTMS and PE for PTSD. Results were promising: the ac-
tive group showed a larger decrease in symptoms relative to
those in the control group (114), although scores did not
achieve the threshold of significance.

CPT, in part, targets the response to thoughts and emo-
tions pertaining to the traumatic event (115, 116). Behavioral
research shows that pairing CPT with cognitive strategy
training (specifically CogSMART) produces greater gains
among persons who have comorbid TBI history (SmartCPT)
(84, 85). Kozel et al. (117) compared the effectiveness of
rTMS delivered in isolation to rTMS paired with CPT. Par-
ticipants were randomly assigned to either active or sham
rTMS with CPT delivered after TMS sessions. Paired inter-
vention resulted in greater gains at 1-, 3-, and 6-month follow-
ups. Collectively, these findings further support the use of
pairing behavioral interventions with TMS treatments in or-
der to facilitate positive long-term neurobehavioral changes.

CONSIDERATIONS AND LIMITATIONS

Responses to any form of intervention are likely to vary
between individuals. TBIs can produce an array of deficits,
and these must each be accounted for in all interventions,
particularly when considering rTMS and iTBS. A number of
factors can influence treatment outcomes, including time
postinjury, comorbid conditions, and pharmacological in-
terventions. It is pertinent that these be accounted for when
assessing cognitive and behavioral responses. Additionally,
rTMS is not suited for everyone. Individuals who have stents
in their brain or neck, metallic implants in their ears or eyes,
implanted electrode devices above the thoracic cavity, and
those who have potentially been exposed to shrapnel are not
candidates for treatment.

With respect to clinical outcomes, we must again em-
phasize that not all studies of MDD and rTMS (30, 118, 119)
or TBI and rTMS have yielded clinically meaningful positive
findings (75–77, 110), indicating that further work is needed
to establish whether rTMS can be used routinely with this
population. Differences in site of stimulation and intensity of
stimulation are likely to have played a role in responsiveness
to treatment and continue to require further investigation.
With respect to client and patient care, critical areas to focus
on include neurobehavioral profiles, heterogeneity with re-
spect to injury type (e.g., diffuse axonal injury, coup-
contrecoup injury), and reported symptoms. Additionally, it
is important to examine the site and intensity of stimulation.
We chose to focus on MDD and PTSD for this review, but
there are other conditions that could co-occur that require
special consideration (e.g., schizophrenia, bipolar disorder).

With respect to CR, effectiveness of TMS must be mea-
sured in terms of participation and functional engagement in
IADLs. Studies commonly measure performance on the

basis of neuropsychological assessments, which may not
translate to functional skills and may assess skills that were
not directly targeted in treatment.

The effects of neurostimulation on cognitive processing
are just beginning to be uncovered. Future research may
identify additional cortical sites of stimulation that more
effectively facilitate cognitive-behavioral gains and better
tailor treatment dosage. Furthermore, the long-term effects
of rTMS and iTBS remain unclear, particularly with respect
to executive-attentional processing and memory. Most cur-
rent evidence is limited to short-term gains. Continued re-
search is needed to elucidate these concerns.

CONCLUSIONS

Rehabilitation of cognitive-psychosocial deficits experi-
enced by persons with a history of TBI and commonly
co-occurring PTSD requires interventions sufficient to in-
duce a shift in neural processing evidenced behaviorally by
enhanced performance. Studies of rTMS and iTBS show that
neurostimulation has the potential to alter neural networks in a
manner that may benefit special populations, such as persons
with a history of TBI. Targeting regions such as the DLPFCwith
rTMS and iTBSmay engender a neural network that ismalleable
and subsequently capable of adaptive functional changes. The
evidentiary framework summarized here supports the pairing of
rTMS and iTBS with cognitive interventions. The framework is
intended to be a steppingstone for future research; strategic
pairings have the potential to augment long-termgains and better
ensure generalization of rehabilitated and trained skills to ev-
eryday life. Further research is needed to continue refining
treatment protocols to produce the most efficacious outcomes.
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