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COVER and FIGURE 1. Approximate portions of the prefrontal cortex (PFC), important for
reward, are color-coded (dorsal anterior cingulate cortex [ACC]: pink; ventral PFC: orange; orbital
PFC: blue) on the left side of axial (A–C) and coronal (D–G) MRIs. Approximate extent and
locations of major midbrain dopamine nuclei important for reward (dark green) and the major
dopaminergic tracts (mesocortical: purple; mesostriatal: red; mesolimbic: dark blue) are color-
coded on the right side of axial (A–C) and coronal (D–G) MRIs.

FIGURE 2. The cortical projections of brainstem
dopamine (DA) neurons are much more extensive
in humans (and other primates) than in rodents.
LEFT: DA transporter mapping in human brain
(colored by relative density) indicates innervation
of the entire cortical mantle.1 RIGHT: DA terminal
mapping in rat brain (red) indicates that innerva-
tion is largely confined to areas of the frontal, cin-
gulate, and entorhinal cortices.2

FIGURE 3. Simplified Summary of the Reward Circuitry, Color-Coded to Match Figure 1.3,4
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Abnormalities in the reward system are believed to
play a role in many psychiatric disorders (for ex-

ample, substance abuse, pathological gambling, major
depression, schizophrenia, attention-deficit hyperactiv-
ity disorder, Parkinson’s disease, Alzheimer’s disease),
so understanding the functional neuroanatomy of re-
ward is important in neuropsychiatry.3,5 Reward is not
a unitary concept. Major aspects include liking (e.g.,
pleasure, hedonia), wanting (e.g., motivation for re-
ward, incentive salience), and learning (e.g., past expe-
riences predicting future rewards).6 Primary (funda-
mental) rewards are naturally-occurring things or
events that are essential for species survival and repro-
duction (e.g., food, sex). Secondary (higher-order) re-
wards are more abstract cognitive representations (e.g.,
monetary, artistic, altruistic, transcendent).3,6 This re-
view will focus on the contributions of the dopamine
(DA) system to reward. Many other neurotransmitter
systems also participate in aspects of reward.7–9

Reward
Research on brain areas important for reward began
with the observation by Olds and Milner in the 1950s
that rats will expend great effort in order to obtain
electrical stimulation of multiple brain areas, including
small regions within the brainstem, diencephalon, and
cortex.3,4,10–13 This work was foreshadowed by earlier
studies in patients with schizophrenia that focused on
the septal area, in which positive immediate responses
(e.g., euphoria) were reported to occur after brain stim-
ulation.14

The medial forebrain bundle in the lateral hypothal-
amus was a common target for electrode placement in
animal studies, as stimulation in this area evoked very

robust behaviors (e.g., self-stimulation to the point of
physical exhaustion, willingness run across an aversive
shock grid to obtain stimulation).4,11–13 Several lines of
evidence suggested that rewarding electrical stimula-
tion activated the dopamine (DA) projection from the
ventral tegmental area (via the medial forebrain bun-
dle) to nucleus accumbens, one part of what is now
termed the ventral striatum.10,15 The ability of DA an-
tagonists to decrease the effectiveness of rewarding
electrical stimulation was particularly important. Sub-
sequent studies indicated that the rewarding effect was
not due to activation of the small, unmyelinated as-
cending DA fibers, but, rather, to large, myelinated fi-
bers descending to brainstem.10,11,13

Animal studies indicate that brainstem DA neurons
have a baseline level of activity (tonic mode, steady
activation) that enables normal downstream function-
ing and is modulated by both positive and negative
reward-related events (phasic mode, fast activa-
tion).12,16–20 DA neurons increase activity in response to
unexpected rewards and to stimuli that predict receipt
of a reward (expectation or anticipation). During con-
ditioned-learning, the increased activity in DA neurons
shifts from the time of reward-receipt to the time of the
reward-predicting stimulus. Activity is only increased
by rewards if they are greater than predicted (positive
prediction error). DA neurons also decrease activity
when reward-expectation is not met (negative predic-
tion error). If receipt of a reward is delayed, activity in
these neurons decreases at the time the reward was
expected, but did not occur, and increases when the
reward is actually received. Much of behavior is guided
by prediction of the future, based on past experiences.
Phasic changes in DA activity, by signaling that some-
thing unexpected relating to reward has occurred, help
to optimize goal-directed behavior. DA neurons also
are sometimes responsive to other types of stimuli (e.g.,
stressful, aversive, alerting), perhaps because of their
motivational salience. Functional MRI (fMRI) studies in
humans have confirmed increased activation in the area
of brainstem containing DA neurons during anticipa-
tion of both primary and secondary rewards.4

Early studies suggested three distinct ascending DA
projection systems from the brainstem (Figure 1). Orig-
inally, it was thought that the limbic and cortical pro-
jections arose from the ventral tegmental area, with the
substantia nigra giving rise to the projection to senso-
rimotor striatum (caudate and putamen); hence, the ni-
grostriatal name for this tract. It is now clear that, al-
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though the pathways are anatomically and functionally
distinct, their cells of origin are intermixed.4,21,22

Two of these DA pathways are particularly important
for the reward system.3,4 The mesocortical DA pathway
projects to multiple cortical areas and is important for
many aspects of reward-processing, including hedonic
evaluation, comparative valuation, and option-assess-
ment. This pathway projects primarily to prefrontal,
cingulate, and entorhinal cortices in rodents, but to the
entire cortical mantle in primates (Figure 2).1,2,21,22 The
mesolimbic DA pathway projects primarily to the ven-
tral striatum, but, also, to other limbic areas (e.g.,
amygdala, olfactory tubercle, septum).21 This pathway
is important for the positive reinforcing effects of both
natural rewards and drugs of abuse.4 Ventral striatum
also receives strong projections from orbitofrontal, ven-
tral medial prefrontal, and anterior cingulate cortices, as
well as limbic-related subcortical areas (Figure 3).4

Functional imaging in humans has shown that re-
wards increase DA release in ventral striatum and that
increasing striatal DA (by amphetamine administra-
tion) enhances rewards.4,23 Activation in ventral stria-
tum is more strongly associated with the anticipation of
reward than the actual receipt, and activation level cor-
relates with the magnitude of the expected reward and
with the effort expended to gain the reward.4,20,23 Some
studies have reported decreased activation in ventral
striatum when an expected reward is not received (re-
ward prediction error).4,20 The ventral striatum contains
multiple functional areas, and it is quite possible that
different aspects of reward are associated with specific
subregions.

Although a valuable approach, most of the studies
utilizing electrical stimulation were not designed to ad-
dress which aspects of reward (liking, wanting, and
learning) were involved.24 The development of meth-
ods that allowed intracranial drug self-administration
made it possible to more clearly identify regions par-
ticipating in reward and to determine the nature of the
influence (studies done primarily in rodents).6,11 Areas
of the brain that endow a sensation (e.g., sweetness)
with hedonic value (pleasure or liking) are generally
identified by their ability to enhance liking of sensory
rewards when stimulated.6 Areas presently believed to
contain “hedonic hotspots” include both ventral stria-
tum and ventral pallidum, brainstem (e.g., ventral teg-
mental area, parabrachial nucleus), and frontal cortex
(e.g., orbitofrontal, cingulate, medial prefrontal and in-
sular cortices). Some of these same areas are also im-

portant for endowing a sensation with motivational
value (incentive-salience or wanting). The nature of the
stimulation is important. Thus, there are areas within
ventral striatum that evoke both liking and wanting
when activated by opioids, but only wanting when ac-
tivated by DA.25 Recent studies suggest that DA is very
important for the motivational value of rewards.24

Addiction
The economic costs (direct and indirect) of drug abuse
are immense, estimated at $180.9 billion for the United
States in 2002 alone.26 Addiction to various substances
is found across cultures worldwide, and animals will
voluntarily self-administer drugs-of-addiction in labo-
ratory settings.12,13 Within the last decade, it has been
recognized that behavioral addictions (e.g., gambling,
pathological internet use, food) share the same core
features as substance addictions. These include craving,
tolerance, withdrawal, and compulsive use, despite oc-
cupational, interpersonal, and financial adversity. Al-
though pathological levels of motivation (incentive-sa-
lience theory), learned compulsive behaviors (learning
theory, habit theory), and avoidance of the negative
aspects of withdrawal (negative reinforcement theory,
opponent process theory) are likely all involved, the
role each plays in the development and maintenance of
addictions is a matter of much debate.12,23,27

A three-stage cycle (binge/intoxication, withdrawal/
negative emotional state, preoccupation/anticipation)
has been proposed, in which a shift from impulsive to
compulsive behaviors occurs as addiction develops.12,13

From a neurobiological standpoint, addiction is a dis-
order of brain reward mechanisms that are crucial for
survival.9,12,13,23,28–30 Although the reinforcing value of
drugs and the development of addiction involve mul-
tiple areas and neurotransmitter systems that differ by
drug-of-abuse, the DA system is of central importance
to all. The mesolimbic DA system is activated by all
major drugs of abuse, with the ventral striatum a key
structure. In animal studies, the brain stimulation re-
quired for reward (reward threshold) is reduced by
acute administration of drugs of abuse. Activation in
the ventral striatum is thought to be important in the
reward-driven binge/intoxication stage, with engage-
ment of dorsal striatum for the habit-formation that is
believed to underlie progression to compulsive use. It
has been proposed that drugs-of-abuse induce larger
and more prolonged activations than natural stimuli,
promoting habit-formation that is quite robust and re-
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sistant to change. Intrinsically below-normal function-
ing in the DA system has been proposed as a risk factor
for development of addiction (reward-deficiency hy-
pothesis). Reward thresholds increase (sensitivity to re-
wards decrease) during protracted withdrawal after
chronic drug administration, suggesting compromise of
the DA system. The anhedonia and motivational defi-
cits present during the withdrawal/negative emotional
state stage may be due to decreased DA function (re-
ward-deficiency). It has been proposed that continued
drug use at this stage is more to restore a normal DA
level to (“get straight”) than to evoke a large DA in-
crease to (“get high”). Alterations in the brain’s stress
systems also occur, and may be important for aversive
stimulus effects and/or heightened anxiety. Altered ac-
tivity in areas of prefrontal cortex and perturbations in
their modulation of limbic-related subcortical areas
(particularly ventral striatum, amygdala, and hip-

pocampus) are present in the preoccupation/anticipa-
tion stage and may give rise to the deficits in executive
functions (e.g., self-control, salience-attribution), and
memory commonly present in addiction.

CONCLUSION

Although there is much yet be understood regarding
the neurobiology of reward and its circuitry, it is cer-
tainly clear that abnormalities in these pathways can
have profound effects on human behavior and on some
psychiatric illnesses. As scientists are more able to map
these pathways and understand the relationships with
other neurotransmitters, it is anticipated that improved
clinical interventions will be developed to lessen the
long-term course of addiction.
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