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Limb ic-Cortical
Dysregulation:
A Proposed Model of
Depression
Helen S. Mayberg, M.D.

A working model of depression implicating failure

of the coordinated interactions of a distributed net-

work of limbic-cortical pathways is proposed. Rest-

ing state patterns of regional glucose metabolism in

idiopathic depressed patients, changes in metabo-

lism with antidepressant treatment, and blood flow

changes with induced sadness in healthy subjects

were used to test and refine this hypothesis. Dorsal

neocortical decreases and ventral paralimbic in-

creases characterize both healthy sadness and de-

pressive illness; concurrent inhibition of overactive

paralimbic regions and normalization of hypofunc-

tioning dorsal cortical sites characterize disease

remission. Normal functioning of the rostral ante-

rior cingulate, with its direct connections to these

dorsal and ventral areas, is postulated to be addi-

tionally required for the observed reciprocal com-

pensatory changes, since pretreatment metabolism

in this region uniquely predicts antidepressant

treatment response. This model is offered as an

adaptable framework to facilitate continued

integration of clinical imaging findings with

complementary neuroanatomical, neurochemical,

and electrophysiological studies in the investiga-

tion of the pathogenesis of affective disorders.
(The Journal of Neuropsychiatry and Clinical

Neurosciences 1997; 9:471-481)

A critical role for limbic structures in the regulation of

mood and affect is now considered almost axi-

omatic. As first articulated by Broca,1 and later Papez,2

Yakovlev,3 and MacLean,4 these regions are centrally

involved in integrating exteroceptive and interoceptive

inputs required for widespread motor, cognitive, and

autonomic processes.�7 The neurobiological substrate

for this integration has been further substantiated by

comparative cytoarchitectural, connectivity, and neuro-

chemical studies. These studies have delineated recip-

rocal pathways linking midline limbic structures

(cingulate, hypothalamus, hippocampus, and amyg-

dala) with widely distributed brainstem, striatal, para-

limbic, and neocortical sitesP18 While there is little

debate that “limbic” brain is critically involved in vari-

ous aspects of motivational, affective, and emotional

behaviors,�7’19� the full role of these regions in the

pathogenesis of depressive illness is not known.

New strategies for testing limbic hypotheses in de-

pressed patients have emerged with the development

of in vivo structural and functional imaging techniques.

To date, imaging studies have identified regional abnor-

malities that appear to both support and contradict the

involvement of limbic structures in this disorder. Ana-

tomical studies of patients with major depression have

not demonstrated consistent changes in primary limbic
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regions, but frontal and striatal abnormalities have been

repeatedly demonstrated.� Functional imaging stud-

ies, on the other hand, report involvement of limbic as

well as frontal, striatal, and paralimbic sites, although

there is tremendous variability among published re-

ports.27-3#{176}Depression likely involves the disruption of a

widely distributed and functionally interactive network

of cortical-striatal and cortical-limbic pathways that is

critical to the integrated regulation of mood and associ-
ated motor, cognitive, and somatic behaviors.

The working model of depression formulated in this

article attempts to both consolidate these diverse experi-

mental observations and accommodate the various
symptoms that characterize the clinical syndrome (Fig-

ure 1). This model has evolved from an earlier proto-

type3#{176}developed to interpret a series of positron

emission tomographic (PET) studies of patients with

major depression associated with specific neurological

disorders.�37 This current, expanded version now in-

cludes data from a more recent series of experiments

examining 1) blood flow changes with induced sadness

in healthy subjects, 2) resting state patterns of regional

metabolism in patients with primary and secondary

depression, and 3) changes in metabolism with antide-

pressant treatment.�3 The convergence of findings

from these experiments and other clinical, anatomical,

neurochemical, and functional imaging studies of de-
pression is the basis for the model presented below.

For this discussion, the model will be limited to the

syndrome of major depression, clinically defined as the

presence of a persistent negative mood state occurring

in conjunction with an array of core behavioral symp-
toms, including disturbances of attention, motivation,

motor and mental speed, sleep, appetite, and libido as
well as anhedonia, anxiety, guilt, and recurrent

thoughts of death with or without suicidal ideations or

attempts.” All clinical and biological features of this

syndrome cannot be fully accounted for by this or any

model at our present stage of knowledge. Rather, this
formulation is offered as an evolving and adaptable
framework to facilitate the integration of clinical func-
tional imaging findings with complementary basic
human and animal research in the study of the patho-

genesis of primary major depression and other affective
disorders.

DEPRESSION MODEL

The proposed model has three main components, each

composed of brain regions previously identified in PET
studies of depression.

The dorsal compartment (Figure 1, red boxes) includes

both neocortical and midline limbic elements, and it is
postulated to be principally involved with attentional

and cognitive features of the illness.4� Depression

symptoms such as apathy, psychomotor slowing, and

impaired performance on tasks of selective and directed

attention and executive function are hypothesized to
localize to anterior and posterior aspects of the dorsal

components of the model, specifically dorsolateral pre-
frontal cortex (dFr 9/46), dorsal anterior cingulate (dCg
24b), inferior parietal cortex (inf Par 40), and striatum

(BG). This hypothesis is based on complementary struc-

tural and functional lesion-deficit correlational studies

in patients with both discrete brain lesions and other
neurological syndromes (with and without depres-

sion)18’�’�’4�51 and functional activation studies de-

signed to specifically map these cognitive domains.5�55
The grouping of individual regions into this dorsal
compartment is based on the previous delineation of
reciprocal connections of these regions with one an-

other5’�’8’�59 and their communication with regions of

the ventral compartment through the rostral and dorsal

anterior cingulate, caudate-putamen, mediodorsal

thalamus, and posterior cingulate.�7”#{176}�8’59
The ventral compartment (Figure 1, blue boxes) is com-

posed of paralimbic cortical, subcortical, and brainstem
regions, and it is hypothesized to mediate the vegetative

and somatic aspects of the illness.4’60’61 Sleep, appetite,
libido, and endocrine disturbances reflect dysregulation

of predominantly paralimbic and subcortical compo-
nents of the compartment, specifically the hypotha-

lamic-pituitary-adrenal axis (Hth), insula (vms),

subgenual cingulate (Cg 25), and brainstem (mb-p). This
hypothesis is based primarily on clinical, biochemical,

and electrophysiological evidence and related animal

studies.’�’60�3 Like those in the dorsal compartment,
the individual members of the ventral compartment

have known reciprocal connections with one an-

other,4’�12’6� as well as links to the dorsal compartment

via the rostral cingulate, ventral striatum, anterior thala-
mus, hippocampus, and posterior cingulate.7’1015’17�9’59

As illustrated in the model schematic, the rostral cm-

gulate (Figure 1, yellow box) is isolated from both the
ventral and dorsal compartments on the basis of its
cytoarchitectural characteristics,�’#{176}’17 its reciprocal con-

nections to both dorsal and ventral anterior cingu-

late,10’12’17’59 and the recent PET finding that metabolism

in this region uniquely predicts antidepressant re-
sponse in acutely depressed patients.3�#{176} These ana-

tomical and clinical distinctions suggest that the rostral
anterior cingulate may serve an important regulatory
role in the overall network by facilitating the interac-

tions between the dorsal and ventral compartments.
Dysfunction in this area thus could have significant
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impact on remote brain regions regulating a variety of partment. Interactions among these regions and corn-

behaviors, including the interaction among mood, cog- partments are necessary for the normal regulation of
nitive, somatic, and autonornic responses. mood and associated motor, cognitive, and vegetative

It is clear that depression involves many different processes. Depression is not simply dysfunction of one

behaviors, none of which localizes to any single brain or another of these components, but is the failure of the
region. In this model, it is proposed that these behaviors coordinated interactions between the subcomponents

are modulated by specific subsets of regions that group of either compartment and between the two compart-

predominantly to either the dorsal or the ventral corn- ments. Support for this hypothesis is presented below.

FIGURE 1. Depression model. Brain regions consistently identified in PET studies of depression are represented in this schematic model.

Regions with known anatomical interconnections that also show synchronized changes (using PET) in three behavioral states-
normal transient sadness (control subjects), baseline depressed (patients), and post-fluoxetine treatment (patients)-are grouped

into three main compartments: dorsal (red), ventral (blue), and rostral (yellow). The dorsal-ventral segregation additionally identi-
fies those brain regions where an inverse relationship is seen across the different PET paradigms. Sadness and depressive illness

are both associated with decreases in dorsal limbic and neocortical regions (red areas) and relative increases in ventral paralimbic

areas (blue areas); with successful treatment, there is a reversal of these findings. The model proposes that illness remission occurs
when there is inhibition of the overactive ventral regions and activation of the previously hypofunctioning dorsal areas (solid black

arrows), an effect facilitated by fluoxetine action in dorsal raphe and its projection sites (dotted lines). Integrity of the rostral cingu-
late (yellow), with its direct anatomical connections to both the dorsal and ventral compartments, is postulated to be additionally

required for the occurrence of these adaptive changes, since pretreatment metabolism in this region uniquely predicts antidepres-

sant treatment response.
White regions delineate brain regions potentially critical to the evolution of the model but where changes have not been

consistently identified across PET studies. Colored arrows identify segregated ventral and dorsal compartment afferents and

efferents to and from the striatum (caudate, putamen, nucleus accumbens) and thalamus (predominantly mediodorsal and
anterior thalamus), although individual cortical-striatal-thalamic pathways are not delineated. Black arrows indicate reciprocal

connections through the anterior and posterior cingulate linking the dorsal and ventral compartments. Dotted lines indicate

serotonergic projections to limbic, paralimbic, subcortical, and cortical regions in both compartments. Red: dFr = dorsolateral

prefrontal; inf Par = inferior parietal; dCg = dorsal anterior cingulate; pCg = posterior cingulate. Blue: Cg 25 = subgenual

(infralimbic) cingulate; vlns = ventral anterior insula, Hc = hippocampus; vFr = ventral frontal; Hth = hypothalamus. Yellow:
rCg = rostral anterior cingulate. White: mb-p = midbrain-pons; BG = basal ganglia; Th = thalamus; Am = amygdala. Numbers

are Brodmann designations.
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LITERATURE BASIS FOR MODEL

Depression in Neurological Disease
Classical lesion-deficit studies have consistently re-

ported a strong association between frontal, temporal,

and basal ganglia lesions and the development of sec-

ondary depression,�’6�76 although the issue of lesion
laterality is still debated.�’6970’73 It is in considering the

potential common link to depression in different groups

of neurological patients that the limitations of the le-

sion-deficit approach become most apparent. Lesion-
behavior correlations fail to identify the uninjured

components of the overall network that regulates mood
symptoms or their functional organization. Functional
imaging, on the other hand, is able to delineate the

consequences of anatomic, chemical, or degenerative
lesions for global and regional brain function and to
identify common patterns across patient groups.

Resting state measures of brain function in secondary

depressions have confirmed the anatomical observa-
tions of the lesion-deficit studies and have added the

dimension of connectivity. Fluorodeoxyglucose (FDG)
PET studies of depressed patients with degenerative

and focal lesions have consistently identified ventral
prefrontal and anterior temporal metabolic abnormali-

ties independent of disease etiology, suggesting a criti-
cal role for these paralimbic and neocortical pathways
in the regulation of mood and associated cognitive defi-

cits.30’3�’� Disease-specific disruption of converging
pathways to these regions best explains the presence of
similar depressive symptoms in patients with distinctly
different disease pathologies.�

Proposed mechanisms for common paralimbic hy-
pometabolism in depression associated with three basal

ganglia disorders-Parkinson’s disease, Huntington’s

disease, and caudate strokes-include anterograde or
retrograde disruption of corticobasal ganglia circuits
from striatal degeneration or injury, degeneration of

mesencephalic monoamine neurons and their cortical
projections, involvement of serotonergic neurons via

disruption of orbital frontal outflow to the dorsal raphe,
and remote changes in basotemporal limbic regions,
with or without involvement of the amygdala.15’�’60’76’8�

� All of these possibilities are consistent with and sup-

portive of the model.

Primary Depression

Unlike the findings in neurological depressions, dis-
ease-specific structural changes in limbic, paralimbic, or

neocortical regions have not been consistently identi-
fied in primary unipolar depressed patients, although
nonspecific changes in ventricular size and T2-weighted

MRJ changes in subcortical gray and periventricular

white matter have been reported, particularly in late-

onset patients.26’85’�

Resting state functional imaging studies in primary
depression, on the other hand, have repeatedly re-
ported the involvement of frontal (dorsal and ventral)

and, less commonly, temporal and cingulate cortex,

consistent with the general pattern seen in neurological
depressions.2729’36’8791 A critical issue is whether these
functional regional abnormalities are disease markers

or, alternatively, reflect the presence of specific depres-
sive symptoms such as apathy, anxiety, psychomotor

slowing, and executive cognitive dysfunction that are

variably expressed in individual depressed patients.
The latter theory might actually explain the variability

in the pattern of regional changes reported in the

literature. The most consistent finding is an inverse
relationship between depression severity and frontal

metabolism or blood flow, which has been replicated by
a number of investigators (reviewed in Ketter et al.�).

These same regions also have been found to correlate
with psychomotor speed,�’92 as well as with other unre-

lated cognitive measures not usually associated with

depression but seen in other neurological and psychiat-
ric diseases.5051’55’77’93 The presence of regional overlaps

cautions against definitive conclusions regarding the

role of any one brain area in regulating particular be-
haviors in depressive illness and suggests a more com-

plex relationship between regional metabolic or blood

flow defects and individual symptoms.

Neurochemical Markers
Evidence of neurochemical mechanisms that would ac-

count for the limbic, paralimbic, and neocortical meta-
bolic abnormalities is compelling but circumstantial. No

single neurotransmitter abnormality can fully explain

the pathophysiology of depression or the associated

constellation of mood, motor, cognitive, and somatic
symptoms.94 Moreover, when a peripheral chemical
marker is identified, it still must be interpreted in the
context of multiple neuroreceptor subtypes, second
messenger effects, and regionally specific regulatory

mechanisms.9�97 Despite these caveats, a large literature

exists to support changes in a number of different

monoamines and pep tides in depression.9�’#{176}3 However,
to date there has been little direct focus on the target
regions identified in published imaging studies.

Serotonergic and noradrenergic mechanisms have
dominated the neurochemical literature on depression

because most typical antidepressant drugs affect synap-

tic concentrations of these two transmitters.94’104
Changes in both serotonergic and noradrenergic me-

tabolites have been reported in subsets of depressed

patients, but the relationship of these peripheral mea-



MAYBERG

JOURNAL OF NEUROPSYCHIATRY 475

sures to changes in brainstem nuclei or their cortical

projections is unknown. Postmortem studies of brains

of depressed suicide victims have reported changes in

serotonergic and noradrenergic receptors.’#{176}5 S2 seroto-

nm receptor changes measured with PET have been

described in the temporal cortex of depressed stroke

patients,3�32 but these measures have not yet been char-
acterized in depressed patients who are not neurologi-

cally impaired. There is, however, clear evidence of both
direct and indirect monoaminergic modulation of in-

trinsic cingulate, hippocampal, amygdala, thalamic,

and hypothalamic neurons and their afferent and effer-

ent projections that may have direct implications for

expanding the working depression model (Figure 1,

dotted lines).10�#{176}#{176}
Dopaminergic projections from the ventral tegmental

area (VTA) show regional specificity for the orbital!

ventral prefrontal cortex and anterior cingulate,�’#{176}’1’ a
finding also of relevance in validating the model. A
dopamine hypothesis is appealing, given the mood-en-
hancing properties of methylphenidate in treating some

FIGURE 2. Reciprocal changes in cortical and paralimbic function

with manipulation of mood state. Left images: Z-score

maps demonstrating changes in regional glucose meta-

bolism (fluorodeoxyglucose PET) in depressed patients
following 6 weeks of fluoxetine treatment. Right im-

ages: changes in regional blood flow (oxygen-15 water

PET) in healthy volunteers 10 minutes after induction

of acute sadness. Depression recovery and induced sad-
ness involve changes in identical dorsal frontal and

ventral paralimbic brain regions. Depression recovery
is associated with increases in dorsal regions and de-

creases in ventral regions. The reverse is seen with in-

duced sadness, where dorsal areas decrease and ventral

areas increase with change in mood state. F = frontal;
cd = caudate; ins = anterior insula; Cg 25 = subgenual

cingulate; Hth = hypothalamus; pCg 31 = posterior

cingulate. Color scale: red = increases, green =

decreases in flow or metabolism.

depressed patients.�’83”#{176}2’�”4 However, dopaminergic

stimulation alone is clearly inadequate in treating the

full depression syndrome, and degeneration of VTA

neurons or their projections has not been demon-

strated.115
Increasing attention has focused on other transmitter

and peptide systems, particularly those with known
monoaminergic interactions.61’ 00�h1�9 Unfortunately,

functional imaging ligands for many of the systems of
greatest interest have not yet been developed. Increases

in paralimbic mu-opiate receptors have been demon-

strated with PET in unipolar depressed patients37 (a
finding consistent with autoradiography studies in de-

pressed suicide victims117) and also in brain regions

critical to the proposed depression model. The relation-
ship of this finding to regional metabolic and perfusion

changes awaits further investigation.

TESTING THE MODEL

Transient Sadness in Healthy Subjects
Mood induction experiments in healthy subjects have

shown involvement of many of the same regions iden-

tified in depressed patients, but with some critical dif-
ferences. Induction of transient sadness results in a
combination of cortical and limbic increases and de-

creases in regional cerebral blood flow.uo��� The exact
pattern appears to be highly dependent on the provo-
cation strategy used to elicit the mood state, the timing

of the scan acquisition relative to the induction of the
desired mood, and the data analysis methods used to

interpret the results. However, despite technical differ-
ences among studies, the limbic, paralimbic, and neo-

cortical components of the proposed model are
repeatedly identified in all reports. Increases in the yen-
tromedial frontal cortex and anterior cingulate are the

most consistent finding.
In our experiment,� the goal was to separate the

neural systems for dysphoria from those for attention

and cognition in order to better interpret the results of
our ongoing FDG studies of primary and secondary

depression.30’3�#{176} Surprisingly, the results of this study

suggested that in healthy subjects, these behaviors were

inseparable: the entire limbic-cortical depression net-
work was simultaneously activated. Specifically, when

a sad mood state was induced and maintained, blood

flow increased in ventral paralimbic regions (anterior
insula, subgenual cingulate) and decreased in dorsal

neocortical and limbic regions (prefrontal, inferior pan-
eta!, dorsal anterior cingulate, posterior cingulate) (Fig-

ure 2). The localization of the dorsal decreases overlaps
both resting state abnormalities seen in depressed
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patients27�’30’39 and sites of increased blood flow seen in

studies of normal selective and directed attention.5�55

Of relevance to the model is the finding that the normal

experience of sadness appears to affect widespread cor-
tical systems that control selective cognitive behaviors,
in a pattern similar to that seen in depressed patients.

Resting State Patterns in Depressed Patients:

Unique Role of the Rostral Cingulate
Despite the general consensus as to the regional local-
ization of functional changes across imaging studies of

depressed patients, there are some troubling discrepan-

cies. These include contradictory reports as to whether
depression is characterized by frontal and cingulate
hypo- or hyperfunctioning.�29’90’10’ One view maintains

that this variability is somehow related to the hetero-
geneity of clinical symptoms such as inattention, apa-

thy, psychomotor slowing, or cognitive impairment,

and several studies support this argument.92’93 Other

explanations implicate medication status (drug naive
versus drug washouts of varying duration), patient se-
lection (familial versus random), severity of the illness,

and transient fluctuations in mood at the time of the
PET study?�’�#{176}9’

Findings from our own studies suggest an alternative

explanation. We tested the hypothesis that specific
metabolic patterns could predict the responsiveness of

depressed patients to antidepressant medication.39’4#{176} In

both treatment responders and nonresponders, de-

FIGURE 3. Predictive value of rostral cingulate metabolism in

depression for 6-week treatment response. Z-score
maps demonstrating differences in the direction of

changes seen in pretreatment rostral cingulate glucose
metabolism (Brodmann area 24a) in two groups of de-

pressed patients compared with healthy control sub-

jects. Rostral cingulate hypometabolism (right image,
negative z-score shown in green) characterizes the even-

tual nonresponder group, in contrast to hyper-
metabolism (left image, positive z-score shown in

yellow) seen in the eventual treatment responders.

creases were found in frontal, parietal, dorsal cingulate,
and insular cortex, consistent with previous reports. In

contrast, metabolism in the rostral anterior cingulate
uniquely distinguished the two groups. Patients with
high pretreatment rostral anterior cingulate metabolism

went on to show a good response, whereas those with
low metabolism remained significantly depressed after

6 weeks of treatment (Figure 3). Metabolism in no other
region discriminated the two groups, nor did associated
demographic, clinical, or behavioral measures, includ-

ing motor speed, cognitive performance, depression

severity, or illness chronicity.
This variation in rostral anterior cingulate activity

(Brodmann area 24a) is of particular relevance to the
model because this region has reciprocal connections

with dorsal anterior cingulate, as well as with a number

of ventral paralimbic regions (insula, basal frontal, hip-

pocampus, subgenual cingulate, amygdala).8’10’12’17’59

These rostral cingulate projection sites are the same

areas where metabolic changes were seen in this study

across the entire depressed patient group.39 The finding

that metabolic activity in the rostral cingulate discrimi-
nates eventual responders from nonresponders sug-

gests that this area may function as a bridge linking

dorsal and ventral pathways necessary for the normal
integrative processing of mood, motor, autonomic, and

cognitive behaviors-all of which are disrupted in de-

pression (see Figure 1).
The fact that responders and nonresponders show an

inverse pattern compared with control subjects further
suggests that an adaptive hypermetabolic change in the
rostra! cingulate may be required to facilitate response

to treatment-a compensatory response not present in

the nonresponder group. In this context, a central role
for rostral cingulate in the depression model is rein-
forced because integrity of this region appears neces-
sary for the normalization of cortical and paralimbic
dysfunction that accompanies recovery from depres-
sion. Rostral cingulate function may be a marker of
potential network plasticity. Functional failure of this
region, as indexed by hypometabolism, appears to be

predictive of poor adaptive potential and eventual poor

outcome. Presence of this metabolic signature in indi-
vidual patients may be clinically useful in identifying
those at risk for a difficult disease course.

Treatment Effects
A final element in testing the model is to explicitly

examine whether the regional abnormalities are static

or dynamic. State-trait studies of acutely ill and remitted
patient groups are one approach. An alternative with

direct implications for the model is to examine how
dorsal and ventral regions change with different treat-
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ments and how these changes reflect overall and symp-

tom-specific improvement.
Published studies demonstrate that recovery from de-

pression is associated with normalization of certain re-

gional abnormalities. Increases in dorsal frontal and
dorsal anterior cingulate hypometabolism and hypo-
perfusion have been reported with drug therapy, sug-

gesting that these defects are state markers of the
illness.27’29’�� On the other hand, studies of sleep dep-
rivation and electroconvulsive therapy (ECT), as well as

group comparisons of ill and remitted patients, suggest

additional state and trait changes involving limbic and
paralimbic regions including the anterior cingulate,
ventral frontal cortex, subgenual cingulate, caudate,

and amygdala.29’90’101’�”27 However, the regions affected
and the direction of the changes reported are variable
across studies and across treatment modalities. This is

particularly true of changes seen in the anterior cingu-
late, where differences in study design, the size and

location of cingulate sampling, and data analysis strate-

gies preclude making direct comparisons across experi-
ments.29’126’127

In a recent study, we tested the validity of the model
by using a pharmacological treatment trial in acutely ill

depressed patients.4�3 Fluoxetine treatment resulted in

regional changes in both the dorsal compartment (pre-

frontal, premotor, dorsal anterior cingulate, and poste-

rior cingulate) and the ventral compartment (subgenual

cingulate area 25, anterior insula, hippocampus, and

ventral frontal cortex). Clinical response was reflected
in the direction of changes in dorsal neocortical and

ventral paralimbic regions: dorsal frontal cortex in-
creases were seen only in responders, and this increase

was a normalization of the pretreatment hypometabolic

pattern (Figure 2); ventral paralimbic areas showed de-

creases, and, unlike changes seen in dorsal neocortex,
these were not due to the normalization of an abnormal
metabolic pattern. Pretreatment metabolism in these
regions was normal to slightly elevated, and symptom

improvement was actually associated with new hy-
pometabolism of these ventral paralimbic regions. In
contrast, nonresponders with identical treatment

showed an increase in metabolism in these same ventral
regions. These divergent effects in responders and non-
responders suggest that there are differences in the

adaptation of target regions to chronic serotonergic
modulation in different patient groups. Studies using

varying doses and different drugs are needed to vali-

date this hypothesis.

Interpretation of Findings
These findings indicate that recovery requires both the
inhibition of overactive paralimbic regions and the nor-

malization of hypofunctioning dorsal neocortical sites

(Figure 1, black arrows). A further inference is that, via

the rostral and posterior cingulate, suppression of ven-
tral paralimbic activity results in the disinhibition of the

dorsal compartment. This theory is supported by the
strong correlation of mood improvement with both dor-

sal compartment increases (dFr 46/9) and ventral com-
partment decreases (Cg 25, Hc). Remission of sleep and
vegetative disturbances, on the other hand, correlated

most significantly with ventral paralimbic suppression,
and improved cognitive performance tracked primarily

with normalization of dorsal prefrontal hypometa-

bolism.42’43
Consistent with its role as a trait marker, rostral cm-

gulate metabolism showed no change with treatment in

either the responder or nonresponder group and did
not correlate with improvement in any of the measured

behaviors. As previously noted, the direct anatomical
connections of this region to dorsal and ventral regions

showing metabolic changes with treatment further sup-

ports its key regulatory role in modulating the interac-

tion between the dorsal and ventral compartments.

Similarities Between Depression

Recovery and Induced Sadness
The localization of the regional changes seen in patients

with a good response to fluoxetine treatment is identical
to that demonstrated in the induced sadness experi-
ment (Figure 2). Recovery from depression is associ-

ated with decreases in ventral paralimbic areas and
increases in the dorsal limbic and neocortical regions.

Induction of transient sadness shows this identical pat-
tern, but in reverse: increases in ventral paralimbic re-

gions and decreases in dorsal neocortex. These shifts in

the relative relationship between the ventral and dorsal

compartments as a function of varying the overall mood

state provide strong evidence for a reciprocal interac-
tion among these regions in both health and disease
(Figure 1).

Psychosurgical Parallels

The postulate that poor response reflects the inability to

suppress ventral paralimbic regions (required for the

release and normalization of dorsal neocortical areas) is

further supported by the use of destructive limbic-
paralimbic lesions (anterior leukotomy, subcallosal or

superior cingulotomy) to alleviate severe refractory de-
pression.’2�’31 The model maintains that recovery re-

quires the disinhibition or release of the abnormally
functioning dorsal compartment by suppression or dis-
connection of ventral paralimbic inputs, an effect facili-

tated by these specific neurosurgical lesions.
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CONCLUSIONS

Although many unanswered questions remain, this se-

ries of experiments provides strong support for the
proposed componential model of depression. Sadness

and depressive illness are both associated with de-

creases in dorsal limbic (anterior and posterior cingu-

late) and neocortical regions (prefrontal, premotor,

parietal cortex) and relative increases in ventral paralim-
bic areas (subgenual cingulate, anterior insula, hypo-
thalamus, caudate). While additional experimental
studies are clearly needed, it is postulated that illness
remission, whether facilitated by psychotherapy, medi-

cation, ECT, or surgery, requires the inhibition of over-

active ventral areas with resulting disinhibition of
underactive dorsal regions. Integrity of the rostral cm-
gulate, with its direct anatomical connections to both

compartments, appears to be additionally required for

the occurrence of these adaptive responses. In the
course of further testing of these hypotheses, this model

will certainly evolve. For now, it provides a useful

framework for facilitating the continued integration of

functional imaging findings with ongoing basic neuro-

anatomical, neurochemical, electrophysiological, and
developmental studies.9�97”32135 It is hoped that these

strategies will contribute to the development of new

system- and symptom-specific treatments and the elu-
cidation of the pathogenesis of depression and related

affective disorders.
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