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Signal decimation and digital filtering in EEG frequency bands 

To examine the instantaneous amplitude and frequency, in wake and sleep states, across EEG 

frequency bands defined as: δ: 0-4; θ: 4-8; α: 8-14; θα: 4-14; β: 14-30, and ϒ: 30-80 Hz, we filtered 

the recorded ECoG signal with digital recursive elliptical filters (Oppenheim et al., 1999) (see 

Supplementary Figure 1). To increase filtering efficiency, we decreased the sampling rate of the 

recorded raw signal from 1 kHz to 20 Hz for filtering in δ band, to 50 Hz for θ and α band, to 100 

Hz for β band, and to 200 Hz for ϒ band. The decreasing of sampling rate (decimation) was done 

with the MATLAB (MathWorks, Natick MA) decimate function. First, the decimate passed the 

raw signal through a low-pass filter that limited the filtered signal bandwidth to 0.8*fd/2, where fd 

was the decimation frequency fd (e.g. 20 Hz for δ band). By using low-pass filtering prior to down- 

sampling, decimate ensured protection against aliasing that could occur if the bandwidth of signal 

to be decimated was higher than fd/2 (Oppenheim et al., 1999). Then, the low-pass filtered signal 

was down-sampled by the function decimate to fd. We selected the decimation frequencies such 

that the decimated signal had enough bandwidth prior to filtering in EEG bands (e.g. the decimated 

signal bandwidth computed as 0.8*fd/2 was 8 Hz for δ, 20 Hz for θ and α, 40 Hz for β, and 80 Hz 

for ϒ band. To remove the 60 Hz noise, for the ϒ band only, we passed the decimated signal 

through a notch filter centered at 60 Hz. The decimation allowed us to design efficient elliptical 

filters with low transition width between the pass- and stop band (1 Hz for low frequency bands 

and 2 Hz for the ϒ band), low ripple in the bandpass band (1 dB) and high attenuation in the stop 

bands (40 dB) (Oppenheim et al., 1999). Digital filtering was done in both the forward and reversed 

directions with the MATLAB filtfilt function. Due to bi-directional processing, we doubled the 

stop-band attenuation of the filters, obtaining an attenuation of 80 dB in the stop bands.   
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Instantaneous amplitude and frequency 

ECoG signals change with time both their amplitude and phase. They can be approximated with a 

signal of the general form x(t) = a(t)cos[φ(t)]. For such signals, one can define the instantaneous 

amplitude a(t) and the instantaneous phase φ(t) by associating to x(t) the analytic signal z(t) = x(t) 

+jy(t), where y(t) represents the Hilbert transform of x(t) (see below)  (Picinbono 1997). The 

Hilbert transform of cos[φ(t)] is sin[φ(t)] (King 2009). Therefore, the analytic signal z(t) can be 

written as: 

 𝑧𝑧(𝑡𝑡)  =  𝑥𝑥(𝑡𝑡)  + 𝑗𝑗𝑗𝑗(𝑡𝑡)  =  𝑎𝑎(𝑡𝑡)exp[𝑗𝑗𝑗𝑗(𝑡𝑡)]      (1) 

where a(t) is positive and the phase φ(t) is defined modulo π.  

Considering the above theory, the instantaneous amplitude (IA) a(t) and the instantaneous phase 

φ(t) of the signal x(t) are given by: 

 𝑎𝑎(𝑡𝑡) =  �𝑥𝑥(𝑡𝑡)2 +  𝑗𝑗(𝑡𝑡)2       (2) 

 𝑗𝑗(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 �𝑦𝑦(𝑡𝑡)
𝑥𝑥(𝑡𝑡)

�        (3) 

where y(t) is the Hilbert transform of x(t) (Goswami and Hoefel 2004): 

 𝑗𝑗(𝑡𝑡) =  1
𝜋𝜋 ∫

𝑥𝑥(𝜏𝜏)
𝑡𝑡−𝜏𝜏

𝑑𝑑𝑑𝑑∞
−∞         (4) 

The instantaneous phase 𝑗𝑗 computed with (3) is limited between –π and π. To compute the 

instantaneous frequency (IF) one needs to unwrap the phase φ(t), which means to transform the 

phase 𝑗𝑗 into a monotonous increasing function 𝑗𝑗𝑢𝑢 by adding 2π every time when the phase 𝑗𝑗 

drops from π to –π. Then, the instantaneous frequency f(t) is computed as the derivative of the 

unwrapped instantaneous phase 𝑗𝑗𝑢𝑢(𝑡𝑡): 

 𝑓𝑓(𝑡𝑡) =  1
2𝜋𝜋

𝑑𝑑𝜑𝜑𝑢𝑢(𝑡𝑡)
𝑑𝑑𝑡𝑡

         (5) 

For a discrete time-sampled signal x(n), the IA and IF are computed as: 

 𝐼𝐼𝐼𝐼(𝑎𝑎) = |𝑧𝑧(𝑎𝑎)|; 𝑧𝑧(𝑎𝑎) = 𝑥𝑥(𝑎𝑎) + 𝑗𝑗{𝐷𝐷𝐷𝐷𝐷𝐷[𝑥𝑥(𝑎𝑎)]}     (6) 

 𝐼𝐼𝐼𝐼(𝑎𝑎) =  𝑓𝑓𝑠𝑠 [𝑗𝑗𝑢𝑢(𝑎𝑎) − 𝑗𝑗𝑢𝑢(𝑎𝑎 − 1)] 2𝜋𝜋⁄      (7) 

where n is the time moment, |.| is the modulus function, DHT is the Discrete Hilbert Transform, fs 

is the sampling frequency and φu(n) is the unwrapped phase of the analytical signal z(n). We used 
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the MATLAB function hilbert as DHT. The function hilbert implements DHT by multiplying the 

discrete Fourier spectrum X(ω) of x(n) with H(ω), where H(ω) = 2 for ω > 0 and 0 for ω < 0. Then, 

hilbert makes use of the inverse discrete Fourier transform of X(ω)H(ω) to obtain the DHT of x(n), 

y(n) = ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑡𝑡[𝑥𝑥(𝑎𝑎)].  

Equation (7) gives the exact value of IF only for intrinsic mode functions (IMF). According to 

Huang et al. 1998 an IMF “is a function that satisfies two conditions: (1) in the whole data set, the 

number of extrema and the number of zero crossings must either equal or differ at most by one; 

and (2) at any point, the mean value of the envelope defined by the local maxima and the envelope 

defined by the local minima is zero”. Huang et al. showed that for any signal x(n) one can find K 

intrinsic mode functions ci(n) such as: 

 𝑥𝑥(𝑎𝑎) =  ∑ 𝑎𝑎𝑖𝑖(𝑎𝑎) + 𝑎𝑎𝐾𝐾𝐾𝐾
𝑖𝑖=1 (𝑎𝑎)       (8) 

where rK(t) is a residue that can be either the mean trend or a constant. Thus, the filtered ECoG 

signal for which we estimate IF is not an IMF, but a sum of IMFs. For this reason, the IF is only 

approximated by using equation (7) (see Supplementary Figure 2). Even if the IFs were 

approximately computed, we preferred to use EEG filtered signals instead of IMFs, due to the 

possible biological connections that could be made between the local sleep phenomenon and the 

frequency changes in different EEG bands. We reduced the noise introduced by the IA and IF 

estimation by smoothing with median and moving average filtering.    

 

Smoothing the instantaneous amplitude and frequency 

To improve the detection of the channels’ active/inactive state, we had to smooth the noisy IA in 

δ band and noisy IF in θα band. For records lasting hours (referred as short records in the text), we 

computed the medians of both IA and IF in moving windows of 10s, overlapping for 2s. A moving 

window of 10s contains enough δ band oscillations to compute a statistically representative median 

value of the δ instantaneous amplitude. Then, we smoothed the medians by using the moving 

average filtering in windows of 20s length, overlapping for 2s. Thus, for records on the order of 

hours, the smoothed IA and IF were sampled every 2s (see Supplementary Figure 3). For whole 

day (24 h) records, we used windows of 20 s for the median filtering and windows of 40 s for the 

subsequent moving average. For both median and average filtering, the moving windows 

overlapped by 10s. Thus, for 24 h records, the smoothed IA and IF were sampled every 10s. For 
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24h long records we changed the moving window length and its overlapping interval to increase 

the signal processing efficiency, without losing essential information.  

Due to the differences in electrode impedance, the magnitude of IA was very different (up to even 

one order of magnitude) between channels. To compensate for each channel, we normalized the 

smoothed IA by dividing it by its standard deviation. As a result, each channel contributed equally 

to the averaged IA across channels (see below). The normalized, smoothed IA in δ band was 

denoted as δA in the text, while the smoothed IF in θα band was denoted as θαF (see Figure 3B, 

Figure 6A-B, Supplementary Figure 3).  

 

Average of the smoothed amplitude and frequency across channels 

We denoted by mδA the average of δA across channels: 

  𝑚𝑚𝑚𝑚𝐼𝐼(𝑎𝑎) = ∑ 𝑚𝑚𝐼𝐼𝑘𝑘(𝑎𝑎)𝑀𝑀
𝑘𝑘=1 𝑀𝑀⁄        (9) 

where δAk(n) was the δA in the channel k at the moment n, and M was the number of channels 

recorded in the subject.  

We denoted by mθαF as the average of θαF across channels: 

𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼(𝑎𝑎) = ∑ 𝑚𝑚𝑚𝑚𝐼𝐼𝑘𝑘(𝑎𝑎)𝑀𝑀
𝑘𝑘=1 𝑀𝑀⁄        (10) 

where θαFk(n) was the θαF in the channel k at the moment n (Figure 4B, Supplementary Figure 

4A, 4C).  We used mδA and mθαF to predict the number of inactive channels, ΣIC, with a linear 

regression model (see Equation 1 in Methods). 

 

Pearson correlation 

The Pearson correlation R(x,y) of two discrete time series x(n), y(n), n = 1,2,…,N is given by: 

𝑅𝑅(𝑥𝑥, 𝑗𝑗) =  ∑ [𝑥𝑥(𝑛𝑛)−�̅�𝑥](𝑦𝑦(𝑛𝑛)−𝑦𝑦�]𝑁𝑁
𝑛𝑛=1

𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦
       (11)  

where �̅�𝑥 and 𝑗𝑗� are the means of  𝑥𝑥 and 𝑗𝑗, respectively, and 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 are the standard deviations 
of 𝑥𝑥 and 𝑗𝑗, respectively (Rodgers and Nicewander 1988). We computed the Pearson correlation 
with the MATLAB function corrcoef. 
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Supplementary Figure 1. Filtering of ECoG signal in EEG bands. We used elliptic, recursive 
digital filters in order to select the information specific to EEG bands. To design efficient, low 
order filters (e.g. of order 6 for the low-pass filter of δ band, and of order 12 for the band-pass 
filters of other bands) we had to use, for each filter, a sampling frequency having the same 
magnitude order as the filter cutoff frequency. Thus, we had to down-sample (decimate) the 
original ECoG signal to 20 Hz for δ band, 50 Hz for θ, α, and θα bands, 100 Hz for β band, and 
200 Hz for ϒ band. The decimation was done by low-pass filtering the signal to a cutoff frequency 
of 0.8*fs/2, where fs was the decimation frequency, followed by discarding a fixed number of 
samples, imposed by the decimation factor. Thus, no band specific information was lost after the 
decimation process (e.g. the spectrum bandwidth limit after decimation was 8 Hz for δ, 20 Hz for 
θ and α, 40 Hz for β, and 80 Hz for ϒ band. By filtering, in both forward and backward direction, 
we doubled the stop-band attenuation from -40 dB to -80dB.       
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Supplementary Figure 2. Example of estimating the instantaneous amplitude (IA) and 
instantaneous frequency (IF). (A) Amplitude and phase modulated signal (light blue line) s(n) = 
A(n)sin[2πf(n)nTs], where Ts = 0.02s, together with corresponding IA (dark blue line). (B) The 
signal frequency f(n) (orange line) and the corresponding IF (red line). The IA in (A) and the IF in 
(B) were computed with Equations (6) and (7), respectively, by using the MATALB hilbert 
function. While IA was a very good approximation of the amplitude modulation signal A(n), IF 
was a modest approximation of the signal frequency f(n) (e.g. 20% relative error at 10s). IF can be 
computed exactly only for intrinsic mode functions (see above). To improve the detection of local 
sleep, we decreased the variability of IA and IF by smoothing with median and moving average 
filtering (see Supplementary Figure 3). 
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Supplementary Figure 3 - Smoothing the instantaneous amplitude in the δ band (δIA) and 
instantaneous frequency in the θα band (θαIF). (A) Channel signal filtered in δ band (0-4 Hz) with 
a low-pass recursive digital filter working at 20 Hz sampling frequency. (B) Channel signal filtered 
in θα band (4-14 Hz) with a band-pass recursive digital filter working at 50 Hz (see Supplementary 
Figure 1). (C) δ Median amplitude (grey line) was obtained after the median filtering of δIA. 
Median filtering was done by computing the median of δIA in moving windows of 10s, overlapping 
by 2s. Then, the median amplitude was averaged in windows of 20s, overlapping by 2s. The 
resulting averaged amplitude (purple line) was subsequently used as a feature for the channel local 
sleep detection, being denoted as δA in text. (D) The smoothed    instantaneous frequency (dark 
red line), denoted as θαF in the text, was computed every 2s by using the same moving median 
and average filtering as for the δA. First, we filtered θαIF with a median filter to get the θα Median 
frequency (grey line). Then, the median frequency was filtered with a moving average filter to 
obtain θαF. δA and θαF were used together, or separately, for the detection of the sleep/wake state. 
Since the smoothed IA (δA) and the smoothed IF (θαF) were computed every 2s from the raw 
ECoG signal sampled at 1Kz, the reduction in data sampling rate was 500 fold, without essential 
information loss. For 24-hour records the median filtering was done in moving windows of 40s, 
and average filtering in windows of 20s, both windows overlapping for 10s.  
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Supplementary Figure 4 - Modeling the sum of inactive channels. (A) The average across 
channels of normalized, smoothed δ instantaneous amplitude (mδA) and the average of the 
smoothed θα instantaneous frequency (mθαF) for subject C539. For all the subjects, mδA and 
mθαF were strongly, negatively correlated during sleep and for 24h records (see Figure 7C). (B) 
Restgram (see text) for subject C539: the number of active (red) and inactive (blue) channels was 
strongly correlated with mδA and mθαF. (C) Sum of inactive channels (ΣIC) was modeled with 
high accuracy by a regression model having mδA and mθαF as predictors (see Equation 1 in 
Methods). Blue points indicate the sum of inactive channels and the mesh defines the regression 
surface. (D) Regression model explained a high percentage of the variability in ΣIC (blue line). 
Model output (black line) was limited between 0 and the number of recorded channel. 
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Table 1. The states (Active/Inactive) of the electrodes in a LTO grid implanted in subject C544 
computed at three time moments. The subject was at sleep at 5am and awake at 9am and 11am 
(see also Figure 5 text). 

Brain area Electrode # Sleep (5am) Wake (9am) Wake (11 am) 
Inferior temporal 
gyrus 

1 Active Active Active 
7 Inactive Active Inactive 

17 Inactive Active Active 
Middle temporal 
gyrus 

2 Active Active Active 
3 Inactive Active Active 
4 Inactive Active Active 
5 Active Inactive Inactive 
6 Inactive Inactive Inactive 

11 Inactive Active Active 
12 Inactive Active Active 
13 Inactive Active Active 
14 Inactive Active Active 
15 Inactive Active Active 
16 Inactive Active Active 
25 Inactive Active Active 
26 Inactive Active Inactive 
27 Inactive Active Inactive 
28 Active Active Active 
38 Inactive Active Active 
39 Active Inactive Inactive 

Inferior occipital 
gyrus 

8 Inactive Active Active 
9 Inactive Active Active 

10 Active Active Active 
Middle occipital 
gyrus 

18 Inactive Active Active 
19 Inactive Active Active 
20 Active Inactive Inactive 
29 Inactive Active Active 
30 Inactive Active Active 

Superior 
temporal gyrus  

21 Inactive Active Active 
22 Inactive Active Active 
23 Inactive Active Active 
24 Inactive Active Active 
32 Inactive Active Inactive 
33 Inactive Active Active 
34 Inactive Inactive Inactive 
35 Inactive Inactive Inactive 
36 Inactive Inactive Inactive 

 37 Inactive Active Inactive 
Traverse 
temporal gyrus 

31 Inactive Active Active 

Cuneus 40 Active Active Active 
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