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Figure S1:  Variables included in the final ML predictive model and average of the absolute SHAP values for each variable, ordered by their relevance to the model (test 

dataset, second wave) 

       
 

                      
 

Levels of the variables plotted against the associated SHAP values in the second wave: visual representation of the relationship between each variable and the risk of having at least 

one provisional psychiatric disorder (PPsyD) that has been modeled by the algorithm. 

ML: machine learning; SHAP: SHapley Additive exPlanations technique     

 

 

 

 

 



 

Table S1: Geographical distribution of the participants included in the study 

 First wave (N = 500) Second wave (N = 236) 

Distribution§ N % N % 

North-western Italy 348 69,6 153 64,8 

North-eastern Italy 45 9,0 29 12,3 

Central Italy 47 9,4 18 7,6 

Southern Italy 47 9,4 25 10,6 

Italian islands 13 2,6 11 4,7 

§ variable not included as potential predictor, because the majority of participants were from north-western Italy; N: number 

 

  



Machine learning methodology 

Variables  

For variables that were potentially useful as predictors in the model, we included all the individual information concerning aspects preceding the pandemic or 

representing its direct consequences, such as pandemic-related personal experiences. 

We decided a priori to remove variables with greater than 20% missing values in the training set (i.e., data from the first wave survey), whereas all variables with 

missing values equal to or less than 20% remained included in the analyses. 

All the 46 variables suitable to be included as potential predictors during the training of the algorithm are reported in Table 1 (section Results) and in this online 

supplement (Tables S2-3). The categorical variables were re-coded with the label-encoding strategy, namely, all cases of each categorical variable were assigned 

an integer. If the variable was ordinal, the class-to-integer conversion respected the order of the classes. 

Some questions were not administered to all participants because they were not relevant (e.g., questions regarding relationship with children were not administered 

to participants without offspring). In this case, the value was coded 0 (“not relevant”) and the other classes of answers started from value 1. This coding strategy 

for categorical variables is justified by the use of a tree-based ML technique. 

The missing values were imputed using the MissForest technique {1}, and implemented with the IterativeImputer function of the Scikit-Learn library version 

0.22.2 {2}, using Random Forest {3} as an estimator. The imputation model was first developed using the training dataset and was then applied to the test dataset. 

 

 

 

 

 



Gradient boosting technique 

Boosting is an ML technique that produces a prediction model in the form of an ensemble of several consecutively developed prediction models. In the current 

study, we used decision tree models, which are commonly used within the gradient boosting ensemble technique. Several decision trees are iteratively built, each 

consecutively trained to reduce the misclassification of the previous decision trees {4}. The final prediction is the result of a weighted sum of the prediction 

performed by all the consecutive decision tree models, which can be as many as hundreds. 

The current study used the implementation of gradient boosted decision trees (GBDT), provided in the eXtreme Gradient Boosting (XGBoost) library {5}. 

 

Hyper-parameter optimization 

Several hyper-parameters need to be defined for the GBDT model. Different values of these hyper-parameters lead to different predictive performances by tuning 

the training process. The aim is to identify the configuration that produces the best possible performance when applied to cases that are not part of the training 

set. To optimize such hyper-parameters, the algorithm was first trained with 40 random hyper-parameter configurations. Subsequently, 60 further configurations 

were progressively estimated with a Bayesian optimization approach, which estimates the hyper-parameter configuration that will maximize the performance of 

the algorithm. This estimation was performed with Gaussian Processes, as implemented in the Scikit-Optimized library (https://scikit-optimize.github.io/). 

The Area Under the Receiving Operating Curve (AUROC) was used as the performance metric to be maximized during the hyper-parameter optimization process. 

The AUROC value is 0.5 when the algorithm makes random predictions, and 1 in case it is always correct in making predictions. AUROC is not directly affected 

by class imbalance. 

 

 

 



Cross-validation 

The aim is to develop an algorithm that achieves the best possible generalized performance and that also performs well beyond the cases used in the training 

process. Cross-validation provides an estimate of such generalized performance for every hyper-parameter configuration. In cross-validation, the training sample 

is divided into several folds of cases that are separated from the training process, with training iteratively performed with the remaining cases. After the training, 

the algorithm is finally applied to the separated cases. 

In this study, we applied a 10-fold cross-validation procedure, stratifying (i.e., balancing) for the percentage of at least one new-onset provisional PsyD (PPsyD) 

in each fold. Finally, the ten performance estimates of the algorithm available for each hyper-parameter configuration were averaged to provide a final point 

estimate of the generalized performance. The hyper-parameter configuration that demonstrated the best average cross-validated AUROC was retained and was 

used to re-train a single algorithm with the entire training sample. 

 

Selection of variables 

In order to select an optimal subset of the initial 46 variables to be used as predictors in the ML algorithm, we used the Minimum Redundancy, Maximum 

Relevance (mRMR) approach {6}. This technique provides a ranking for the progressive inclusion of the available variables, indicating for each step (in the 

current study, from using a single variable to all 46 variables) which variables should be additionally included. The mRMR approach identifies which variable to 

include next by simultaneously taking into consideration the association with the output for each of the remaining variables (maximum relevance, i.e., the variable 

whose addition would bring maximal addition of predictive information) and the association with variables that have been selected at previous iterations 

(minimum redundancy, i.e., the variable whose addition would bring minimal redundancy to the predictive information already provided by the variable that has 

already been included). 



In this study, the above-mentioned hyper-parameter optimization and cross-validation procedure was performed 46 times, each time considering as predictors a 

subset of size 1 to 46 variables (all variables) as indicated by the mRMR procedure. For each feature subset, the result of each hyper-parameter search is a final 

algorithm based on the optimized hyper-parameter configuration, with an associated average cross-validated AUROC. The subset that resulted in a better average 

cross-validated AUROC was chosen as the optimized set of variables to use, and the associated algorithm was retained as the final algorithm. 
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