The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use, including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

×
Published Online:

In vivo proton magnetic resonance spectroscopy (1H-MRS) has been used to assess biochemical changes that occur in demyelinating lesions and in normal appearing white matter (NAWM) in multiple sclerosis (MS) patients. N-acetylaspartate (NAA) levels in MS patients may indicate neural viability. In early stages of MS, patients may suffer from slight cognitive impairment. The objective of this study was to investigate memory function in relation to biochemical properties of frontal brain areas of MS patients. Twenty-one patients with relapsing-remitting MS and 21 healthy comparison subjects were examined psychometrically using the Wechsler Memory Scale (WMS) and the Multiple Sclerosis Functional Composite (MSFC) scale, and (1H-MRS) was used to examine frontal deep white matter (left hemisphere) and the frontal cingulate gyrus (Brodmann areas 24/32, bihemispheric). A significant reduction of the NAA/Creatine (Cr) ratio in the frontal cingulate gyrus among the MS patient group was detected when compared to healthy subjects. A significant decrease in the NAA/Cr ratio was also found in volumes of cerebral deep white matter, including plaques, in the MS patients. No NAA/Cr ratio changes were found in NAWM. Differences in MSFC results did not reach statistical significance, but the WMS general memory score showed a significant statistical difference between the patient group and healthy subjects. Regression analysis showed the gray matter NAA/Cr ratio of the frontal cingulate gyrus to be significantly related to distinct memory functions. The authors conclude that (1H-MRS) of gray matter in early stages of MS may be pertinent in the detections of early metabolic disturbances, particularly in subjects with or without minor neurological impairment. Findings suggest a general relationship between the metabolic status of the frontal cortices and memory function.